已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Self-supervised network for oriented synthetic aperture radar ship detection based on self-distillation

合成孔径雷达 遥感 计算机科学 逆合成孔径雷达 雷达成像 人工智能 蒸馏 雷达 地质学 电信 化学 有机化学
作者
Wentao Li,Haixia Xu,Furong Shi,Liming Yuan,Xianbin Wen
出处
期刊:Journal of Applied Remote Sensing [SPIE]
卷期号:18 (04)
标识
DOI:10.1117/1.jrs.18.046504
摘要

Ship detection is an important and challenging task in the field of synthetic aperture radar (SAR) image processing. Recently, deep learning technologies have yielded superior performance for object detection in remote sensing images. However, it is difficult to obtain the labels of SAR images, which limits the application of deep learning in ship detection from SAR images. To break the limitation of label information, we propose a self-supervised framework based on self-distillation for ship detection from SAR images in this paper. The framework consists of three core components: a self-supervised learning paradigm utilizing knowledge distillation, a deep residual shrinkage network (SAR-DRSN) model, and an oriented bounding boxes progressive generation model. The core of our method is a self-supervised variant of knowledge distillation, which propels the deep learning process in the absence of labeled data. The SAR-DRSN model excels in generating high-quality feature maps, significantly reducing the speckle noise. In addition, we introduce an iterative strategy for the accurate and precise delineation of ships, involving continuous refinement of oriented bounding boxes to optimize size and rotation angle for precise ship localization. Our experiments, obtained on two SAR datasets, demonstrate that the proposed method can achieve a satisfactory performance in ship detection without requiring any label information.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助哭泣科研民工采纳,获得10
刚刚
echopussy应助WUYONGSHUAI采纳,获得10
1秒前
iNk应助sy采纳,获得20
3秒前
丘比特应助知性的雅彤采纳,获得10
5秒前
眯眯眼的雪莲完成签到 ,获得积分10
7秒前
alpha完成签到,获得积分10
9秒前
教主完成签到,获得积分10
10秒前
归燕完成签到,获得积分10
11秒前
12秒前
13秒前
任性吐司发布了新的文献求助30
15秒前
111完成签到 ,获得积分10
16秒前
18秒前
19秒前
20秒前
科研通AI2S应助wanli采纳,获得10
23秒前
23秒前
DDDD发布了新的文献求助10
23秒前
拜托加辣完成签到,获得积分20
26秒前
26秒前
科研通AI5应助adeline采纳,获得10
26秒前
苏大强完成签到,获得积分10
27秒前
Xx发布了新的文献求助10
28秒前
快乐缘郡发布了新的文献求助10
29秒前
31秒前
36秒前
爆米花应助哈哈采纳,获得10
39秒前
薛建伟完成签到 ,获得积分10
39秒前
脑洞疼应助燕十三采纳,获得30
40秒前
40秒前
科研怪兽发布了新的文献求助30
41秒前
Fx完成签到 ,获得积分10
43秒前
科研通AI5应助樱桃小苹果采纳,获得10
43秒前
科研通AI5应助9999采纳,获得10
44秒前
44秒前
zhaosiqi完成签到,获得积分10
45秒前
46秒前
48秒前
Owen应助重要的小夏采纳,获得10
48秒前
木讷山关注了科研通微信公众号
49秒前
高分求助中
All the Birds of the World 3000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
IZELTABART TAPATANSINE 500
Introduction to Comparative Public Administration: Administrative Systems and Reforms in Europe: Second Edition 2nd Edition 300
Spontaneous closure of a dural arteriovenous malformation 300
GNSS Applications in Earth and Space Observations 300
Not Equal : Towards an International Law of Finance 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3725129
求助须知:如何正确求助?哪些是违规求助? 3270247
关于积分的说明 9965166
捐赠科研通 2985226
什么是DOI,文献DOI怎么找? 1637815
邀请新用户注册赠送积分活动 777727
科研通“疑难数据库(出版商)”最低求助积分说明 747171