Classification of apple leaf diseases based on MobileViT transfer learning

计算机科学 学习迁移 人工智能
作者
Yongjun Ding,Wentao Yang
标识
DOI:10.1117/12.3035225
摘要

In recent years, the apple growing industry in Qingyang has been seriously threatened by many diseases such as grey mould, rust, brown spot, scar disease and leaf spot. These diseases have caused significant losses to the local economy. This study discusses the method of combining computer technology with deep learning to accurately diagnose these diseases, with the aim of reducing their negative impact on agricultural development. To this end, we collected early disease data sets of apple leaves in Ningxian Modern Agricultural Industrial Park in Qingyang City, Gansu Province, and Haisheng Apple Planting Base in Yulinzi Town, Zhengning County. Considering the problems of low accuracy of classification of apple leaf diseases, difficulty in collecting data sets and huge model parameters, this paper selects grey spot, rust, brown spot, scarring and leaf spot as the research objects, and proposes a MobileViT model suitable for small sample size based on the theory of deep transfer learning. The model aims to solve the problems of large model, low precision and small sample in the process of apple leaf disease detection under complex background. Firstly, MobileViT, Vision Transformer and Swin Transformer are used for the training of the model transfer learning. The experimental results show that the accuracy rate of the MobileViT model is 97.3%, the loss value is 0.169, the model size is 18.9 MB, and the prediction time of a single image is only 2.6 ms. Furthermore, the MobileViT model is optimised by freezing different training strategies, the migration strategy is the most effective, so the average accuracy of the model in apple leaf disease classification reaches 98.54%, and the loss value drops to 0.125. Finally, we developed a WeChat applet to deploy the trained model, and realised the visualisation of apple leaf disease classification. This innovative application not only improves the efficiency and accuracy of disease classification, but also provides new opportunities for the modernisation and intelligence of agricultural technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助正直的以晴采纳,获得10
1秒前
3秒前
鹊桥有归路应助怡然平萱采纳,获得10
4秒前
123发布了新的文献求助10
7秒前
Carpe发布了新的文献求助10
8秒前
maox1aoxin应助WangZK采纳,获得20
9秒前
10秒前
13秒前
Carpe完成签到,获得积分10
15秒前
15秒前
Hello应助科研通管家采纳,获得10
16秒前
田様应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
星辰大海应助科研通管家采纳,获得30
16秒前
orixero应助科研通管家采纳,获得10
16秒前
英俊的铭应助科研通管家采纳,获得10
16秒前
Raniysun应助科研通管家采纳,获得10
16秒前
见青山应助科研通管家采纳,获得10
16秒前
丘比特应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
17秒前
18秒前
mbf发布了新的文献求助10
19秒前
19秒前
19秒前
20秒前
20秒前
mbf发布了新的文献求助10
20秒前
20秒前
mbf发布了新的文献求助10
21秒前
21秒前
21秒前
猫南北发布了新的文献求助10
21秒前
mbf发布了新的文献求助10
21秒前
mbf发布了新的文献求助10
21秒前
mbf发布了新的文献求助10
21秒前
mbf发布了新的文献求助10
22秒前
22秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
錢鍾書楊絳親友書札 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3293603
求助须知:如何正确求助?哪些是违规求助? 2929481
关于积分的说明 8442476
捐赠科研通 2601672
什么是DOI,文献DOI怎么找? 1420049
科研通“疑难数据库(出版商)”最低求助积分说明 660493
邀请新用户注册赠送积分活动 643102