已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Classification of apple leaf diseases based on MobileViT transfer learning

计算机科学 学习迁移 人工智能
作者
Yongjun Ding,Wentao Yang
标识
DOI:10.1117/12.3035225
摘要

In recent years, the apple growing industry in Qingyang has been seriously threatened by many diseases such as grey mould, rust, brown spot, scar disease and leaf spot. These diseases have caused significant losses to the local economy. This study discusses the method of combining computer technology with deep learning to accurately diagnose these diseases, with the aim of reducing their negative impact on agricultural development. To this end, we collected early disease data sets of apple leaves in Ningxian Modern Agricultural Industrial Park in Qingyang City, Gansu Province, and Haisheng Apple Planting Base in Yulinzi Town, Zhengning County. Considering the problems of low accuracy of classification of apple leaf diseases, difficulty in collecting data sets and huge model parameters, this paper selects grey spot, rust, brown spot, scarring and leaf spot as the research objects, and proposes a MobileViT model suitable for small sample size based on the theory of deep transfer learning. The model aims to solve the problems of large model, low precision and small sample in the process of apple leaf disease detection under complex background. Firstly, MobileViT, Vision Transformer and Swin Transformer are used for the training of the model transfer learning. The experimental results show that the accuracy rate of the MobileViT model is 97.3%, the loss value is 0.169, the model size is 18.9 MB, and the prediction time of a single image is only 2.6 ms. Furthermore, the MobileViT model is optimised by freezing different training strategies, the migration strategy is the most effective, so the average accuracy of the model in apple leaf disease classification reaches 98.54%, and the loss value drops to 0.125. Finally, we developed a WeChat applet to deploy the trained model, and realised the visualisation of apple leaf disease classification. This innovative application not only improves the efficiency and accuracy of disease classification, but also provides new opportunities for the modernisation and intelligence of agricultural technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ibuprofen完成签到,获得积分10
2秒前
3秒前
奋斗傲芙发布了新的文献求助10
4秒前
wpz完成签到,获得积分10
5秒前
快乐映秋完成签到,获得积分10
5秒前
嘻嘻哈哈应助带虾的烧麦采纳,获得10
5秒前
6秒前
乐乐应助Chillym采纳,获得10
6秒前
YYDS54完成签到,获得积分10
6秒前
huangfan发布了新的文献求助10
8秒前
端庄的飞阳完成签到 ,获得积分10
9秒前
脑洞疼应助one采纳,获得30
9秒前
cwn完成签到 ,获得积分10
10秒前
10秒前
14秒前
printzhao发布了新的文献求助10
14秒前
14秒前
15秒前
15秒前
kentonchow应助铮铮采纳,获得10
16秒前
傻丢完成签到 ,获得积分10
18秒前
18秒前
风趣小蜜蜂完成签到 ,获得积分10
18秒前
慕青应助五音不全汪采纳,获得10
19秒前
归尘发布了新的文献求助10
21秒前
奕柯完成签到,获得积分10
22秒前
科研通AI6应助小甘采纳,获得30
22秒前
23秒前
bkagyin应助杭谷波采纳,获得10
23秒前
FashionBoy应助Jonathan采纳,获得10
23秒前
25秒前
云帆发布了新的文献求助10
25秒前
26秒前
26秒前
26秒前
孤独的以菱完成签到 ,获得积分10
29秒前
一只快乐的小比熊完成签到 ,获得积分10
29秒前
111发布了新的文献求助10
29秒前
4114发布了新的文献求助10
32秒前
wx发布了新的文献求助10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5355997
求助须知:如何正确求助?哪些是违规求助? 4487796
关于积分的说明 13971120
捐赠科研通 4388602
什么是DOI,文献DOI怎么找? 2411155
邀请新用户注册赠送积分活动 1403696
关于科研通互助平台的介绍 1377356