Classification of apple leaf diseases based on MobileViT transfer learning

计算机科学 学习迁移 人工智能
作者
Yongjun Ding,Wentao Yang
标识
DOI:10.1117/12.3035225
摘要

In recent years, the apple growing industry in Qingyang has been seriously threatened by many diseases such as grey mould, rust, brown spot, scar disease and leaf spot. These diseases have caused significant losses to the local economy. This study discusses the method of combining computer technology with deep learning to accurately diagnose these diseases, with the aim of reducing their negative impact on agricultural development. To this end, we collected early disease data sets of apple leaves in Ningxian Modern Agricultural Industrial Park in Qingyang City, Gansu Province, and Haisheng Apple Planting Base in Yulinzi Town, Zhengning County. Considering the problems of low accuracy of classification of apple leaf diseases, difficulty in collecting data sets and huge model parameters, this paper selects grey spot, rust, brown spot, scarring and leaf spot as the research objects, and proposes a MobileViT model suitable for small sample size based on the theory of deep transfer learning. The model aims to solve the problems of large model, low precision and small sample in the process of apple leaf disease detection under complex background. Firstly, MobileViT, Vision Transformer and Swin Transformer are used for the training of the model transfer learning. The experimental results show that the accuracy rate of the MobileViT model is 97.3%, the loss value is 0.169, the model size is 18.9 MB, and the prediction time of a single image is only 2.6 ms. Furthermore, the MobileViT model is optimised by freezing different training strategies, the migration strategy is the most effective, so the average accuracy of the model in apple leaf disease classification reaches 98.54%, and the loss value drops to 0.125. Finally, we developed a WeChat applet to deploy the trained model, and realised the visualisation of apple leaf disease classification. This innovative application not only improves the efficiency and accuracy of disease classification, but also provides new opportunities for the modernisation and intelligence of agricultural technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
rui完成签到,获得积分10
1秒前
LP829发布了新的文献求助30
1秒前
淡淡的寄灵完成签到,获得积分10
1秒前
mufcyang发布了新的文献求助10
1秒前
2秒前
qianyiwen完成签到,获得积分10
2秒前
purple1212发布了新的文献求助10
3秒前
3秒前
科研通AI5应助darling采纳,获得10
3秒前
无花果应助asd采纳,获得10
3秒前
Accept发布了新的文献求助10
3秒前
张张发布了新的文献求助10
4秒前
郎芳完成签到,获得积分10
4秒前
文艺孱发布了新的文献求助20
5秒前
5秒前
5秒前
7秒前
7秒前
L3213036054发布了新的文献求助10
7秒前
Yao完成签到,获得积分10
7秒前
菜菜完成签到 ,获得积分10
8秒前
8秒前
8秒前
8秒前
9秒前
MMZ发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
爆米花应助beta采纳,获得10
9秒前
张鱼丸子完成签到,获得积分20
10秒前
10秒前
11秒前
懵懂的采梦应助yzm采纳,获得10
12秒前
浮游应助你若晴好采纳,获得10
12秒前
魈玖发布了新的文献求助10
12秒前
五花肉就酒走完成签到,获得积分10
12秒前
12秒前
传奇3应助huanghe采纳,获得10
13秒前
从容荠发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5069868
求助须知:如何正确求助?哪些是违规求助? 4291111
关于积分的说明 13369607
捐赠科研通 4111377
什么是DOI,文献DOI怎么找? 2251468
邀请新用户注册赠送积分活动 1256618
关于科研通互助平台的介绍 1189158