Classification of apple leaf diseases based on MobileViT transfer learning

计算机科学 学习迁移 人工智能
作者
Yongjun Ding,Wentao Yang
标识
DOI:10.1117/12.3035225
摘要

In recent years, the apple growing industry in Qingyang has been seriously threatened by many diseases such as grey mould, rust, brown spot, scar disease and leaf spot. These diseases have caused significant losses to the local economy. This study discusses the method of combining computer technology with deep learning to accurately diagnose these diseases, with the aim of reducing their negative impact on agricultural development. To this end, we collected early disease data sets of apple leaves in Ningxian Modern Agricultural Industrial Park in Qingyang City, Gansu Province, and Haisheng Apple Planting Base in Yulinzi Town, Zhengning County. Considering the problems of low accuracy of classification of apple leaf diseases, difficulty in collecting data sets and huge model parameters, this paper selects grey spot, rust, brown spot, scarring and leaf spot as the research objects, and proposes a MobileViT model suitable for small sample size based on the theory of deep transfer learning. The model aims to solve the problems of large model, low precision and small sample in the process of apple leaf disease detection under complex background. Firstly, MobileViT, Vision Transformer and Swin Transformer are used for the training of the model transfer learning. The experimental results show that the accuracy rate of the MobileViT model is 97.3%, the loss value is 0.169, the model size is 18.9 MB, and the prediction time of a single image is only 2.6 ms. Furthermore, the MobileViT model is optimised by freezing different training strategies, the migration strategy is the most effective, so the average accuracy of the model in apple leaf disease classification reaches 98.54%, and the loss value drops to 0.125. Finally, we developed a WeChat applet to deploy the trained model, and realised the visualisation of apple leaf disease classification. This innovative application not only improves the efficiency and accuracy of disease classification, but also provides new opportunities for the modernisation and intelligence of agricultural technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孙刚发布了新的文献求助10
刚刚
叮当发布了新的文献求助10
刚刚
舒心的依风完成签到,获得积分10
刚刚
专业美女制造完成签到,获得积分10
刚刚
cure发布了新的文献求助10
刚刚
刚刚
薇薇安发布了新的文献求助10
1秒前
1秒前
ZZZ完成签到,获得积分10
1秒前
禁止通行发布了新的文献求助10
1秒前
酷酷的傲之完成签到,获得积分10
2秒前
Ava应助枝江小学生采纳,获得10
2秒前
2秒前
2秒前
3秒前
3秒前
Clown完成签到,获得积分10
4秒前
4秒前
囿于一隅完成签到,获得积分10
5秒前
5秒前
酒笙完成签到,获得积分10
6秒前
Ava应助活泼的寄风采纳,获得10
7秒前
寒冷的世界完成签到 ,获得积分10
7秒前
行7发布了新的文献求助10
7秒前
帕尼灬尼发布了新的文献求助10
7秒前
Owen应助江边鸟采纳,获得30
7秒前
8秒前
认真柜子发布了新的文献求助10
10秒前
舒服的灵安完成签到 ,获得积分10
11秒前
爆米花应助执着的灵阳采纳,获得10
11秒前
JamesPei应助儒雅寻菱采纳,获得10
11秒前
Mars_1108发布了新的文献求助10
11秒前
忐忑的从露完成签到,获得积分20
11秒前
恋返竹询完成签到,获得积分10
12秒前
MM应助行7采纳,获得10
13秒前
大根猫完成签到 ,获得积分10
13秒前
13秒前
何相逢应助纯纯啦啦啦采纳,获得10
14秒前
茴茴完成签到 ,获得积分10
14秒前
DNA甲基转移酶完成签到,获得积分10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987021
求助须知:如何正确求助?哪些是违规求助? 3529365
关于积分的说明 11244629
捐赠科研通 3267729
什么是DOI,文献DOI怎么找? 1803932
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808635