已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Classification of apple leaf diseases based on MobileViT transfer learning

计算机科学 学习迁移 人工智能
作者
Yongjun Ding,Wentao Yang
标识
DOI:10.1117/12.3035225
摘要

In recent years, the apple growing industry in Qingyang has been seriously threatened by many diseases such as grey mould, rust, brown spot, scar disease and leaf spot. These diseases have caused significant losses to the local economy. This study discusses the method of combining computer technology with deep learning to accurately diagnose these diseases, with the aim of reducing their negative impact on agricultural development. To this end, we collected early disease data sets of apple leaves in Ningxian Modern Agricultural Industrial Park in Qingyang City, Gansu Province, and Haisheng Apple Planting Base in Yulinzi Town, Zhengning County. Considering the problems of low accuracy of classification of apple leaf diseases, difficulty in collecting data sets and huge model parameters, this paper selects grey spot, rust, brown spot, scarring and leaf spot as the research objects, and proposes a MobileViT model suitable for small sample size based on the theory of deep transfer learning. The model aims to solve the problems of large model, low precision and small sample in the process of apple leaf disease detection under complex background. Firstly, MobileViT, Vision Transformer and Swin Transformer are used for the training of the model transfer learning. The experimental results show that the accuracy rate of the MobileViT model is 97.3%, the loss value is 0.169, the model size is 18.9 MB, and the prediction time of a single image is only 2.6 ms. Furthermore, the MobileViT model is optimised by freezing different training strategies, the migration strategy is the most effective, so the average accuracy of the model in apple leaf disease classification reaches 98.54%, and the loss value drops to 0.125. Finally, we developed a WeChat applet to deploy the trained model, and realised the visualisation of apple leaf disease classification. This innovative application not only improves the efficiency and accuracy of disease classification, but also provides new opportunities for the modernisation and intelligence of agricultural technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
求知者1701应助诸星大采纳,获得50
2秒前
ccc完成签到,获得积分10
3秒前
eterofpar完成签到,获得积分10
9秒前
南桥枝完成签到 ,获得积分10
12秒前
han关闭了han文献求助
13秒前
谦让碧菡完成签到,获得积分10
14秒前
Yina完成签到 ,获得积分10
15秒前
fengquan完成签到 ,获得积分10
15秒前
16秒前
旺仔先生完成签到 ,获得积分10
17秒前
ding应助机灵天亦采纳,获得10
21秒前
22秒前
煜清清完成签到 ,获得积分10
23秒前
25秒前
啦啦啦完成签到,获得积分10
25秒前
26秒前
27秒前
fat完成签到,获得积分10
28秒前
夏尔完成签到,获得积分10
28秒前
ccc发布了新的文献求助10
30秒前
石烟祝完成签到,获得积分10
30秒前
mmmio发布了新的文献求助10
30秒前
30秒前
30秒前
量子星尘发布了新的文献求助10
30秒前
康康完成签到 ,获得积分10
33秒前
夏尔发布了新的文献求助10
34秒前
35秒前
37秒前
肖易应助xiaolong采纳,获得10
37秒前
汉堡包应助车鹭洋采纳,获得10
37秒前
黄毛虎完成签到 ,获得积分0
38秒前
FashionBoy应助有钱采纳,获得10
40秒前
darqin完成签到 ,获得积分10
40秒前
端庄的如花完成签到,获得积分10
40秒前
脑洞疼应助科研通管家采纳,获得10
42秒前
英俊的铭应助科研通管家采纳,获得30
42秒前
NexusExplorer应助科研通管家采纳,获得10
42秒前
42秒前
怕孤独的忆南完成签到,获得积分10
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4610291
求助须知:如何正确求助?哪些是违规求助? 4016305
关于积分的说明 12434932
捐赠科研通 3697878
什么是DOI,文献DOI怎么找? 2039077
邀请新用户注册赠送积分活动 1071968
科研通“疑难数据库(出版商)”最低求助积分说明 955614