已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

ChartKG: A Knowledge-Graph-Based Representation for Chart Images

计算机科学 图表 数据可视化 图形 代表(政治) 人工智能 可视化 计算机图形学(图像) 情报检索 数据科学 计算机视觉 理论计算机科学 数学 统计 政治 政治学 法学
作者
Zhiguang Zhou,Haoxuan Wang,Zhengqing Zhao,Fangfang Zheng,Yongheng Wang,Wei Chen,Yong Wang
出处
期刊:IEEE Transactions on Visualization and Computer Graphics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tvcg.2024.3476508
摘要

Chart images, such as bar charts, pie charts, and line charts, are explosively produced due to the wide usage of data visualizations. Accordingly, knowledge mining from chart images is becoming increasingly important, which can benefit downstream tasks like chart retrieval and knowledge graph completion. However, existing methods for chart knowledge mining mainly focus on converting chart images into raw data and often ignore their visual encodings and semantic meanings, which can result in information loss for many downstream tasks. In this paper, we propose ChartKG, a novel knowledge graph (KG) based representation for chart images, which can model the visual elements in a chart image and semantic relations among them including visual encodings and visual insights in a unified manner.Further, we develop a general framework to convert chart images to the proposed KG-based representation. It integrates a series of image processing techniques to identify visual elements and relations, e.g., CNNs to classify charts, yolov5 and optical character recognition to parse charts, and rule-based methods to construct graphs. We present four cases to illustrate how our knowledge-graph-based representation can model the detailed visual elements and semantic relations in charts, and further demonstrate how our approach can benefit downstream applications such as semantic-aware chart retrieval and chart question answering. We also conduct quantitative evaluations to assess the two fundamental building blocks of our chart-to-KG framework, i.e., object recognition and optical character recognition. The results provide support for the usefulness and effectiveness of ChartKG.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
dominic12361完成签到 ,获得积分10
3秒前
风清扬发布了新的文献求助10
4秒前
如履平川完成签到 ,获得积分10
5秒前
6秒前
涛老三完成签到 ,获得积分10
9秒前
bkagyin应助风清扬采纳,获得10
10秒前
KDS完成签到,获得积分10
11秒前
SUn完成签到,获得积分10
11秒前
Orange应助你求我一下采纳,获得10
13秒前
木有完成签到 ,获得积分10
15秒前
Ava应助萤lueluelue采纳,获得10
17秒前
Alex完成签到,获得积分0
18秒前
18秒前
曾经冰露完成签到,获得积分10
18秒前
kk完成签到,获得积分10
19秒前
Erich完成签到 ,获得积分10
21秒前
南北完成签到,获得积分10
24秒前
KDS发布了新的文献求助10
25秒前
26秒前
量子星尘发布了新的文献求助10
27秒前
沉默的觅海完成签到 ,获得积分10
29秒前
花开那年完成签到 ,获得积分10
29秒前
咫尺天涯发布了新的文献求助10
29秒前
29秒前
Mulee发布了新的文献求助30
32秒前
柠ning完成签到,获得积分10
33秒前
夔kk完成签到 ,获得积分10
33秒前
番茄黄瓜芝士片完成签到 ,获得积分10
34秒前
汉堡包应助咫尺天涯采纳,获得10
36秒前
小羊咩完成签到 ,获得积分10
38秒前
Mulee完成签到,获得积分20
42秒前
友好的尔容完成签到,获得积分10
43秒前
风中的又亦完成签到 ,获得积分20
44秒前
adkdad完成签到,获得积分10
44秒前
情怀应助briliian采纳,获得10
46秒前
48秒前
科研通AI2S应助km采纳,获得10
50秒前
FIN应助科研通管家采纳,获得20
1分钟前
FashionBoy应助科研通管家采纳,获得10
1分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956962
求助须知:如何正确求助?哪些是违规求助? 3503011
关于积分的说明 11111001
捐赠科研通 3234007
什么是DOI,文献DOI怎么找? 1787710
邀请新用户注册赠送积分活动 870713
科研通“疑难数据库(出版商)”最低求助积分说明 802234