酿酒酵母
倍性
代谢工程
生产(经济)
酵母
生物技术
化学
食品科学
生物化学
生物
遗传学
基因
经济
微观经济学
作者
Ziqi Ye,Xianhao Xu,Yaokang Wu,Yanfeng Liu,Jianghua Li,Guocheng Du,Lei Zhu,Xueqin Lv
标识
DOI:10.1021/acs.jafc.4c07609
摘要
7-Dehydrocholesterol (7-DHC), a direct precursor of vitamin D3, has attracted increasing attention in microbial fermentation recently. In this study, 7-DHC biosynthesis in diploid Saccharomyces cerevisiae with robust ergosterol production was achieved by heterologous 24-dehydrocholesterol reductase expression, generating 44.1 mg/L 7-DHC, whereas the titer of ergosterol decreased by 40.5%. The ergosterol biosynthetic pathway was completely blocked by knocking out ERG6 and ERG5, affording a 4.2-fold increase in the 7-DHC titer. Subsequently, the facilitation of the mevalonate and the postsqualene pathways accompanied by elimination of transcriptional repressors enhanced 7-DHC synthesis, and the 7-DHC titer reached 738.5 mg/L in a shake flask. Further validation in a 50 L fermenter demonstrated that the 7-DHC titer reached 3.80 g/L within just 24 h, with productivity reaching 158.3 mg/L/h, setting a new benchmark as the highest reported to date. This study paves the way toward a large-scale and cost-effective manufacture of 7-DHC.
科研通智能强力驱动
Strongly Powered by AbleSci AI