已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Physics-informed machine learning: A comprehensive review on applications in anomaly detection and condition monitoring

异常检测 计算机科学 异常(物理) 人工智能 机器学习 物理 凝聚态物理
作者
Yuandi Wu,Brett Sicard,S. Andrew Gadsden
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:255: 124678-124678 被引量:56
标识
DOI:10.1016/j.eswa.2024.124678
摘要

Condition monitoring plays a vital role in ensuring the reliability and optimal performance of various engineering systems. Traditional methods for condition monitoring rely on physics-based models and statistical analysis techniques. However, these approaches often face challenges in dealing with complex systems and the limited availability of accurate physical models. In recent years, physics-informed machine learning (PIML) has emerged as a promising approach for condition monitoring, combining the strengths of physics-based modelling and data-driven machine learning. This study presents a comprehensive overview of PIML techniques in the context of condition monitoring. The central concept driving PIML is the incorporation of known physical laws and constraints into machine learning algorithms, enabling them to learn from available data while remaining consistent with physical principles. Through fusing domain knowledge with data-driven learning, PIML methods offer enhanced accuracy and interpretability in comparison to purely data-driven approaches. In this comprehensive survey, detailed examinations are performed with regard to the methodology by which known physical principles are integrated within machine learning frameworks, as well as their suitability for specific tasks within condition monitoring. Incorporation of physical knowledge into the ML model may be realized in a variety of methods, with each having its unique advantages and drawbacks. The distinct advantages and limitations of each methodology for the integration of physics within data-driven models are detailed, considering factors such as computational efficiency, model interpretability, and generalizability to different systems in condition monitoring and fault detection. Several case studies and works of literature utilizing this emerging concept are presented to demonstrate the efficacy of PIML in condition monitoring applications. From the literature reviewed, the versatility and potential of PIML in condition monitoring may be demonstrated. Novel PIML methods offer an innovative solution for addressing the complexities of condition monitoring and associated challenges. This comprehensive survey helps form the foundation for future work in the field. As the technology continues to advance, PIML is expected to play a crucial role in enhancing maintenance strategies, system reliability, and overall operational efficiency in engineering systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
伶俐甜瓜发布了新的文献求助10
4秒前
memory完成签到,获得积分10
5秒前
jy完成签到 ,获得积分20
6秒前
上官若男应助贪玩的橘子采纳,获得10
7秒前
Smile发布了新的文献求助30
12秒前
12秒前
12秒前
山山完成签到 ,获得积分10
13秒前
李华完成签到 ,获得积分10
14秒前
12A完成签到,获得积分10
16秒前
Aurora发布了新的文献求助10
19秒前
无奈的灵松完成签到 ,获得积分20
21秒前
JY完成签到 ,获得积分20
21秒前
浮游应助科研通管家采纳,获得10
21秒前
21秒前
汉堡包应助科研通管家采纳,获得30
21秒前
GingerF应助科研通管家采纳,获得100
21秒前
浮游应助科研通管家采纳,获得10
21秒前
浮游应助科研通管家采纳,获得10
21秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
小二完成签到,获得积分10
22秒前
痛痛痛完成签到,获得积分10
26秒前
化学之星完成签到,获得积分10
26秒前
qingsyxuan完成签到,获得积分10
27秒前
小圆圈发布了新的文献求助10
27秒前
小杨应助lhy采纳,获得10
29秒前
徐凤年完成签到,获得积分10
37秒前
39秒前
小油菜完成签到 ,获得积分10
41秒前
Adalwolf完成签到,获得积分10
41秒前
SciGPT应助娜娜采纳,获得30
42秒前
franklin_fsz完成签到,获得积分10
43秒前
43秒前
王欣完成签到 ,获得积分10
44秒前
ccm应助Adalwolf采纳,获得10
46秒前
48秒前
GingerF举报LBX求助涉嫌违规
49秒前
俏皮访烟发布了新的文献求助10
50秒前
lulibohan完成签到,获得积分10
53秒前
53秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Holistic Discourse Analysis 600
Constitutional and Administrative Law 600
Vertebrate Palaeontology, 5th Edition 530
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5345477
求助须知:如何正确求助?哪些是违规求助? 4480424
关于积分的说明 13946213
捐赠科研通 4377929
什么是DOI,文献DOI怎么找? 2405477
邀请新用户注册赠送积分活动 1398087
关于科研通互助平台的介绍 1370475