Physics-informed machine learning: A comprehensive review on applications in anomaly detection and condition monitoring

异常检测 计算机科学 异常(物理) 人工智能 机器学习 物理 凝聚态物理
作者
Yuandi Wu,Brett Sicard,S. Andrew Gadsden
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:255: 124678-124678 被引量:56
标识
DOI:10.1016/j.eswa.2024.124678
摘要

Condition monitoring plays a vital role in ensuring the reliability and optimal performance of various engineering systems. Traditional methods for condition monitoring rely on physics-based models and statistical analysis techniques. However, these approaches often face challenges in dealing with complex systems and the limited availability of accurate physical models. In recent years, physics-informed machine learning (PIML) has emerged as a promising approach for condition monitoring, combining the strengths of physics-based modelling and data-driven machine learning. This study presents a comprehensive overview of PIML techniques in the context of condition monitoring. The central concept driving PIML is the incorporation of known physical laws and constraints into machine learning algorithms, enabling them to learn from available data while remaining consistent with physical principles. Through fusing domain knowledge with data-driven learning, PIML methods offer enhanced accuracy and interpretability in comparison to purely data-driven approaches. In this comprehensive survey, detailed examinations are performed with regard to the methodology by which known physical principles are integrated within machine learning frameworks, as well as their suitability for specific tasks within condition monitoring. Incorporation of physical knowledge into the ML model may be realized in a variety of methods, with each having its unique advantages and drawbacks. The distinct advantages and limitations of each methodology for the integration of physics within data-driven models are detailed, considering factors such as computational efficiency, model interpretability, and generalizability to different systems in condition monitoring and fault detection. Several case studies and works of literature utilizing this emerging concept are presented to demonstrate the efficacy of PIML in condition monitoring applications. From the literature reviewed, the versatility and potential of PIML in condition monitoring may be demonstrated. Novel PIML methods offer an innovative solution for addressing the complexities of condition monitoring and associated challenges. This comprehensive survey helps form the foundation for future work in the field. As the technology continues to advance, PIML is expected to play a crucial role in enhancing maintenance strategies, system reliability, and overall operational efficiency in engineering systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
欣慰问凝完成签到 ,获得积分10
1秒前
ShishanXue完成签到 ,获得积分10
1秒前
zgrmws完成签到,获得积分0
1秒前
英勇的酸奶关注了科研通微信公众号
2秒前
Ivyxie发布了新的文献求助30
2秒前
xj_yjl完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
康轲完成签到,获得积分0
3秒前
丘比特应助Dell采纳,获得30
4秒前
jzmulyl完成签到,获得积分10
6秒前
ym完成签到,获得积分10
6秒前
高中生完成签到,获得积分10
6秒前
SSSSScarlett完成签到,获得积分20
6秒前
发发旦旦完成签到,获得积分10
8秒前
11应助耍酷的世平采纳,获得30
8秒前
木月月复习了嘛完成签到,获得积分10
9秒前
三三完成签到 ,获得积分10
10秒前
1111完成签到,获得积分10
12秒前
13秒前
赘婿应助水煮南瓜头采纳,获得10
14秒前
寒冷丹雪完成签到,获得积分10
15秒前
xionggege完成签到,获得积分10
15秒前
Zhjie126完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
16秒前
shuoliu完成签到 ,获得积分10
17秒前
宁赴湘完成签到 ,获得积分10
17秒前
jzmupyj完成签到,获得积分10
18秒前
淡定井完成签到 ,获得积分10
18秒前
水煮南瓜头完成签到,获得积分10
19秒前
keyanxinshou完成签到 ,获得积分10
20秒前
20秒前
晴天完成签到,获得积分10
22秒前
量子星尘发布了新的文献求助10
23秒前
April完成签到 ,获得积分10
23秒前
正一笑完成签到,获得积分10
23秒前
Owen应助花样年华采纳,获得10
26秒前
zypazyp完成签到 ,获得积分10
26秒前
阿呸完成签到,获得积分10
27秒前
meng完成签到 ,获得积分10
27秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5698644
求助须知:如何正确求助?哪些是违规求助? 5125521
关于积分的说明 15221881
捐赠科研通 4853620
什么是DOI,文献DOI怎么找? 2604188
邀请新用户注册赠送积分活动 1555722
关于科研通互助平台的介绍 1514062