Physics-informed machine learning: A comprehensive review on applications in anomaly detection and condition monitoring

异常检测 计算机科学 异常(物理) 人工智能 机器学习 物理 凝聚态物理
作者
Yuandi Wu,Brett Sicard,S. Andrew Gadsden
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:255: 124678-124678 被引量:1
标识
DOI:10.1016/j.eswa.2024.124678
摘要

Condition monitoring plays a vital role in ensuring the reliability and optimal performance of various engineering systems. Traditional methods for condition monitoring rely on physics-based models and statistical analysis techniques. However, these approaches often face challenges in dealing with complex systems and the limited availability of accurate physical models. In recent years, physics-informed machine learning (PIML) has emerged as a promising approach for condition monitoring, combining the strengths of physics-based modelling and data-driven machine learning. This study presents a comprehensive overview of PIML techniques in the context of condition monitoring. The central concept driving PIML is the incorporation of known physical laws and constraints into machine learning algorithms, enabling them to learn from available data while remaining consistent with physical principles. Through fusing domain knowledge with data-driven learning, PIML methods offer enhanced accuracy and interpretability in comparison to purely data-driven approaches. In this comprehensive survey, detailed examinations are performed with regard to the methodology by which known physical principles are integrated within machine learning frameworks, as well as their suitability for specific tasks within condition monitoring. Incorporation of physical knowledge into the ML model may be realized in a variety of methods, with each having its unique advantages and drawbacks. The distinct advantages and limitations of each methodology for the integration of physics within data-driven models are detailed, considering factors such as computational efficiency, model interpretability, and generalizability to different systems in condition monitoring and fault detection. Several case studies and works of literature utilizing this emerging concept are presented to demonstrate the efficacy of PIML in condition monitoring applications. From the literature reviewed, the versatility and potential of PIML in condition monitoring may be demonstrated. Novel PIML methods offer an innovative solution for addressing the complexities of condition monitoring and associated challenges. This comprehensive survey helps form the foundation for future work in the field. As the technology continues to advance, PIML is expected to play a crucial role in enhancing maintenance strategies, system reliability, and overall operational efficiency in engineering systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
ctt完成签到,获得积分10
1秒前
柏代桃完成签到,获得积分10
1秒前
2秒前
老板娘完成签到,获得积分10
2秒前
红皮燕子发布了新的文献求助10
2秒前
2秒前
2秒前
化工牛马发布了新的文献求助10
2秒前
郝宝真完成签到,获得积分20
3秒前
3秒前
畅快访蕊发布了新的文献求助30
3秒前
IAMXC发布了新的文献求助10
4秒前
迅速斑马完成签到,获得积分10
4秒前
宏宏完成签到,获得积分10
4秒前
文鸳完成签到,获得积分20
5秒前
ry发布了新的文献求助30
6秒前
李爱国应助霍旭芳采纳,获得10
6秒前
fly完成签到 ,获得积分10
6秒前
失忆的ivy发布了新的文献求助10
7秒前
科研通AI2S应助Sxr采纳,获得10
7秒前
柏代桃发布了新的文献求助30
7秒前
喻修杰完成签到,获得积分10
7秒前
芋泥卷完成签到,获得积分20
7秒前
8秒前
大火龙完成签到,获得积分10
8秒前
8秒前
宋博发布了新的文献求助10
8秒前
Ava应助SHD采纳,获得10
9秒前
冷静灵竹完成签到,获得积分10
9秒前
9秒前
大蘑法师完成签到,获得积分20
9秒前
你们才来发布了新的文献求助10
9秒前
lyb完成签到 ,获得积分10
10秒前
10秒前
FYm发布了新的文献求助10
10秒前
甜甜的不二完成签到,获得积分10
11秒前
orixero应助蒲婉秋采纳,获得10
11秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147464
求助须知:如何正确求助?哪些是违规求助? 2798635
关于积分的说明 7830317
捐赠科研通 2455424
什么是DOI,文献DOI怎么找? 1306789
科研通“疑难数据库(出版商)”最低求助积分说明 627899
版权声明 601587