Mooring System ULS Analysis Based on Empirical QTFs of Wave Drift Loads

系泊 海洋工程 计算机科学 航空航天工程 声学 工程类 物理
作者
Nuno Fonseca,Galin Tahchiev,Øyvind Ygre Rogne
标识
DOI:10.1115/omae2024-127825
摘要

Abstract Ultimate limit state (ULS) analysis for the mooring system of floating structures is performed for the most severe seastate conditions. For many structures, horizontal wave drift loads and related slow drift oscillations are simultaneously the environmental component with the largest contribution to the extreme line loads and the component with the largest uncertainty in numerical predictions. It is acknowledged that state-of-the-art hydrodynamic design analysis tools, namely radiation/diffraction potential flow codes, tend to underestimate wave drift loads in severe seastates for floating structures with large waterplane area. This is often the case for floating, production, storage and offloading vessels (FPSOs). While correction methods have been proposed recently, this paper presents a different approach. The proposal is to use empirical quadratic transfer functions (QTFs) of horizontal wave drift loads directly in the mooring analysis time domain simulations. The empirical QTFs are identified from model test data in severe seastates with current by a second order signal analysis technique known as cross bi-spectral analysis. The paper describes the method and validates with a case study consisting of a FPSO operating in the North Sea. Standard hydrodynamic analysis tools provide correct first order motions in extreme seastates with current, as compared to model test data. However, it significantly underestimates the wave drift loads and the related low frequency (LF) horizontal vessel motions. Use of empirical QTFs significantly improve the LF motion predictions, both in terms of mean offset and in terms of LF standard deviation and energy spectra. Furthermore, the limitations of Newman’s approximation versus use of full QTFs are highlighted. The later provides a much better phasing of the LF motions and also better prediction of the LF peaks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
悦耳的乐松完成签到,获得积分10
1秒前
星星泡饭发布了新的文献求助10
1秒前
着急的语儿完成签到,获得积分10
1秒前
Owen应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得30
1秒前
差劲先森完成签到 ,获得积分10
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
2秒前
科目三应助goodgoodstudy采纳,获得10
2秒前
田様应助科研通管家采纳,获得10
2秒前
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
Wu发布了新的文献求助10
2秒前
2秒前
lemon应助科研通管家采纳,获得20
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
bkagyin应助科研通管家采纳,获得10
2秒前
打打应助聪聪great采纳,获得10
2秒前
传奇3应助科研通管家采纳,获得10
3秒前
无名完成签到,获得积分10
3秒前
打打应助科研通管家采纳,获得10
3秒前
小马甲应助科研通管家采纳,获得10
3秒前
打打应助科研通管家采纳,获得10
3秒前
李健应助科研通管家采纳,获得40
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
3秒前
只A不B应助科研通管家采纳,获得30
3秒前
3秒前
SYanan完成签到 ,获得积分10
4秒前
Owen应助大方嵩采纳,获得10
4秒前
5秒前
5秒前
5秒前
耍酷花卷发布了新的文献求助10
5秒前
孟陬十一完成签到,获得积分10
6秒前
6秒前
搞怪的凡蕾完成签到,获得积分10
7秒前
8秒前
8秒前
万能图书馆应助刘星星采纳,获得10
9秒前
Ting完成签到 ,获得积分10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762