MTS-YOLO: A Multi-Task Lightweight and Efficient Model for Tomato Fruit Bunch Maturity and Stem Detection

成熟度(心理) 园艺 生物 任务(项目管理) 工程类 政治学 系统工程 法学
作者
Maonian Wu,H.L. Lin,Xingren Shi,Shaojun Zhu,Bo Zheng
出处
期刊:Horticulturae [MDPI AG]
卷期号:10 (9): 1006-1006 被引量:1
标识
DOI:10.3390/horticulturae10091006
摘要

The accurate identification of tomato maturity and picking positions is essential for efficient picking. Current deep-learning models face challenges such as large parameter sizes, single-task limitations, and insufficient precision. This study proposes MTS-YOLO, a lightweight and efficient model for detecting tomato fruit bunch maturity and stem picking positions. We reconstruct the YOLOv8 neck network and propose the high- and low-level interactive screening path aggregation network (HLIS-PAN), which achieves excellent multi-scale feature extraction through the alternating screening and fusion of high- and low-level information while reducing the number of parameters. Furthermore, We utilize DySample for efficient upsampling, bypassing complex kernel computations with point sampling. Moreover, context anchor attention (CAA) is introduced to enhance the model’s ability to recognize elongated targets such as tomato fruit bunches and stems. Experimental results indicate that MTS-YOLO achieves an F1-score of 88.7% and an mAP@0.5 of 92.0%. Compared to mainstream models, MTS-YOLO not only enhances accuracy but also optimizes the model size, effectively reducing computational costs and inference time. The model precisely identifies the foreground targets that need to be harvested while ignoring background objects, contributing to improved picking efficiency. This study provides a lightweight and efficient technical solution for intelligent agricultural picking.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助gwh采纳,获得10
1秒前
1秒前
1秒前
1秒前
隐形曼青应助zhihan采纳,获得10
3秒前
3秒前
xylxyl完成签到,获得积分10
3秒前
4秒前
ZBN完成签到,获得积分10
4秒前
222关闭了222文献求助
5秒前
chinh完成签到,获得积分10
5秒前
钮祜禄废废完成签到,获得积分10
5秒前
5秒前
曾经富完成签到,获得积分10
7秒前
酷酷海豚完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
8秒前
9秒前
青青完成签到 ,获得积分10
11秒前
Chan0501发布了新的文献求助10
11秒前
昭昭完成签到,获得积分10
12秒前
SCI发布了新的文献求助10
12秒前
卓然完成签到,获得积分10
12秒前
李来仪发布了新的文献求助10
13秒前
14秒前
菲菲呀完成签到,获得积分10
14秒前
Rrr发布了新的文献求助10
14秒前
16秒前
陌路完成签到,获得积分10
16秒前
善学以致用应助leon采纳,获得30
16秒前
17秒前
斯文败类应助嘻嘻采纳,获得10
17秒前
科研通AI5应助小只bb采纳,获得30
17秒前
yyyy发布了新的文献求助10
17秒前
2023AKY完成签到,获得积分10
19秒前
19秒前
20秒前
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794