Radiomics parameters of epicardial adipose tissue predict mortality in acute pulmonary embolism

医学 队列 肺栓塞 特征(语言学) 排名(信息检索) 放射科 内科学 人工智能 计算机科学 语言学 哲学
作者
Alexey Surov,Silke Zimmermann,Mattes Hinnerichs,Hans‐Jonas Meyer,Anar Aghayev,Jan Borggrefe
出处
期刊:Respiratory Research [Springer Nature]
卷期号:25 (1)
标识
DOI:10.1186/s12931-024-02977-x
摘要

Abstract Background Accurate prediction of short-term mortality in acute pulmonary embolism (APE) is very important. The aim of the present study was to analyze the prognostic role of radiomics values of epicardial adipose tissue (EAT) in APE. Methods Overall, 508 patients were included into the study, 209 female (42.1%), mean age, 64.7 ± 14.8 years. 4.6%and 12.4% died (7- and 30-day mortality, respectively). For external validation, a cohort of 186 patients was further analysed. 20.2% and 27.7% died (7- and 30-day mortality, respectively). CTPA was performed at admission for every patient before any previous treatment on multi-slice CT scanners. A trained radiologist, blinded to patient outcomes, semiautomatically segmented the EAT on a dedicated workstation using ImageJ software. Extraction of radiomic features was applied using the pyradiomics library. After correction for correlation among features and feature cleansing by random forest and feature ranking, we implemented feature signatures using 247 features of each patient. In total, 26 feature combinations with different feature class combinations were identified. Patients were randomly assigned to a training and a validation cohort with a ratio of 7:3. We characterized two models (30-day and 7-day mortality). The models incorporate a combination of 13 features of seven different image feature classes. Findings We fitted the characterized models to a validation cohort ( n = 169) in order to test accuracy of our models. We observed an AUC of 0.776 (CI 0.671–0.881) and an AUC of 0.724 (CI 0.628–0.820) for the prediction of 30-day mortality and 7-day mortality, respectively. The overall percentage of correct prediction in this regard was 88% and 79% in the validation cohorts. Lastly, the AUC in an independent external validation cohort was 0.721 (CI 0.633–0.808) and 0.750 (CI 0.657–0.842), respectively. Interpretation Radiomics parameters of EAT are strongly associated with mortality in patients with APE. Clinical trial number Not applicable.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助TTTTT采纳,获得10
刚刚
正太低音炮完成签到,获得积分10
刚刚
7788完成签到,获得积分10
刚刚
大美女完成签到,获得积分10
1秒前
仁爱雪晴发布了新的文献求助10
1秒前
Jared应助田天天采纳,获得10
2秒前
李西西完成签到,获得积分10
2秒前
聪明凡之应助爱博采纳,获得20
2秒前
李晓凤发布了新的文献求助10
3秒前
3秒前
量子星尘发布了新的文献求助10
5秒前
小朱发布了新的文献求助10
5秒前
乐乐完成签到,获得积分10
7秒前
sxl完成签到 ,获得积分10
7秒前
丘比特应助ys111采纳,获得10
7秒前
8秒前
哈哈完成签到,获得积分10
8秒前
hyphen完成签到,获得积分10
9秒前
moxi摩西完成签到,获得积分10
9秒前
香蕉觅云应助MYY采纳,获得10
10秒前
燕小丙完成签到,获得积分10
10秒前
11秒前
supersuper完成签到,获得积分10
12秒前
瑞仔发布了新的文献求助10
12秒前
13秒前
13秒前
chengmin发布了新的文献求助10
14秒前
YYMY2022完成签到,获得积分10
14秒前
在水一方应助tt采纳,获得10
16秒前
16秒前
狂野的山雁完成签到,获得积分10
17秒前
kkk完成签到,获得积分20
17秒前
俏皮元珊发布了新的文献求助10
18秒前
吨吨发布了新的文献求助40
18秒前
充电宝应助hyphen采纳,获得10
18秒前
科研通AI2S应助草没味采纳,获得10
19秒前
19秒前
好好学习发布了新的文献求助10
20秒前
Jovid完成签到,获得积分10
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5653053
求助须知:如何正确求助?哪些是违规求助? 4789236
关于积分的说明 15062819
捐赠科研通 4811737
什么是DOI,文献DOI怎么找? 2574034
邀请新用户注册赠送积分活动 1529786
关于科研通互助平台的介绍 1488422