Radiomics parameters of epicardial adipose tissue predict mortality in acute pulmonary embolism

医学 队列 肺栓塞 特征(语言学) 排名(信息检索) 放射科 内科学 人工智能 计算机科学 语言学 哲学
作者
Alexey Surov,Silke Zimmermann,Mattes Hinnerichs,Hans‐Jonas Meyer,Anar Aghayev,Jan Borggrefe
出处
期刊:Respiratory Research [Springer Nature]
卷期号:25 (1)
标识
DOI:10.1186/s12931-024-02977-x
摘要

Abstract Background Accurate prediction of short-term mortality in acute pulmonary embolism (APE) is very important. The aim of the present study was to analyze the prognostic role of radiomics values of epicardial adipose tissue (EAT) in APE. Methods Overall, 508 patients were included into the study, 209 female (42.1%), mean age, 64.7 ± 14.8 years. 4.6%and 12.4% died (7- and 30-day mortality, respectively). For external validation, a cohort of 186 patients was further analysed. 20.2% and 27.7% died (7- and 30-day mortality, respectively). CTPA was performed at admission for every patient before any previous treatment on multi-slice CT scanners. A trained radiologist, blinded to patient outcomes, semiautomatically segmented the EAT on a dedicated workstation using ImageJ software. Extraction of radiomic features was applied using the pyradiomics library. After correction for correlation among features and feature cleansing by random forest and feature ranking, we implemented feature signatures using 247 features of each patient. In total, 26 feature combinations with different feature class combinations were identified. Patients were randomly assigned to a training and a validation cohort with a ratio of 7:3. We characterized two models (30-day and 7-day mortality). The models incorporate a combination of 13 features of seven different image feature classes. Findings We fitted the characterized models to a validation cohort ( n = 169) in order to test accuracy of our models. We observed an AUC of 0.776 (CI 0.671–0.881) and an AUC of 0.724 (CI 0.628–0.820) for the prediction of 30-day mortality and 7-day mortality, respectively. The overall percentage of correct prediction in this regard was 88% and 79% in the validation cohorts. Lastly, the AUC in an independent external validation cohort was 0.721 (CI 0.633–0.808) and 0.750 (CI 0.657–0.842), respectively. Interpretation Radiomics parameters of EAT are strongly associated with mortality in patients with APE. Clinical trial number Not applicable.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hbpu230701发布了新的文献求助10
1秒前
2秒前
DD发布了新的文献求助10
2秒前
2秒前
JM完成签到,获得积分10
2秒前
慕青应助满意紫丝采纳,获得10
2秒前
安静的毛豆完成签到,获得积分20
3秒前
情怀应助文右三采纳,获得10
3秒前
优秀思卉发布了新的文献求助30
4秒前
5秒前
冯前浪完成签到,获得积分20
6秒前
木木木发布了新的文献求助10
7秒前
7秒前
9秒前
9秒前
QDU应助第五个完全数采纳,获得20
9秒前
tiptip应助李里哩采纳,获得10
10秒前
SciGPT应助李里哩采纳,获得10
10秒前
10秒前
周繁发布了新的文献求助10
10秒前
优秀思卉完成签到,获得积分10
10秒前
大气的苠完成签到,获得积分10
11秒前
Hello应助科研鲁宾孙采纳,获得10
11秒前
赘婿应助冯前浪采纳,获得30
12秒前
ZJFL发布了新的文献求助10
12秒前
12秒前
酒剑仙完成签到,获得积分10
13秒前
一一发布了新的文献求助10
13秒前
14秒前
14秒前
15秒前
16秒前
Auditor发布了新的文献求助10
17秒前
CodeCraft应助帅气航空采纳,获得10
18秒前
18秒前
Awei完成签到,获得积分10
19秒前
小桶爸爸发布了新的文献求助10
19秒前
20秒前
21秒前
21秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694691
求助须知:如何正确求助?哪些是违规求助? 5098273
关于积分的说明 15214299
捐赠科研通 4851210
什么是DOI,文献DOI怎么找? 2602193
邀请新用户注册赠送积分活动 1554073
关于科研通互助平台的介绍 1511978