Radiomics parameters of epicardial adipose tissue predict mortality in acute pulmonary embolism

医学 队列 肺栓塞 特征(语言学) 排名(信息检索) 放射科 内科学 人工智能 计算机科学 哲学 语言学
作者
Alexey Surov,Silke Zimmermann,Mattes Hinnerichs,Hans‐Jonas Meyer,Anar Aghayev,Jan Borggrefe
出处
期刊:Respiratory Research [Springer Nature]
卷期号:25 (1)
标识
DOI:10.1186/s12931-024-02977-x
摘要

Abstract Background Accurate prediction of short-term mortality in acute pulmonary embolism (APE) is very important. The aim of the present study was to analyze the prognostic role of radiomics values of epicardial adipose tissue (EAT) in APE. Methods Overall, 508 patients were included into the study, 209 female (42.1%), mean age, 64.7 ± 14.8 years. 4.6%and 12.4% died (7- and 30-day mortality, respectively). For external validation, a cohort of 186 patients was further analysed. 20.2% and 27.7% died (7- and 30-day mortality, respectively). CTPA was performed at admission for every patient before any previous treatment on multi-slice CT scanners. A trained radiologist, blinded to patient outcomes, semiautomatically segmented the EAT on a dedicated workstation using ImageJ software. Extraction of radiomic features was applied using the pyradiomics library. After correction for correlation among features and feature cleansing by random forest and feature ranking, we implemented feature signatures using 247 features of each patient. In total, 26 feature combinations with different feature class combinations were identified. Patients were randomly assigned to a training and a validation cohort with a ratio of 7:3. We characterized two models (30-day and 7-day mortality). The models incorporate a combination of 13 features of seven different image feature classes. Findings We fitted the characterized models to a validation cohort ( n = 169) in order to test accuracy of our models. We observed an AUC of 0.776 (CI 0.671–0.881) and an AUC of 0.724 (CI 0.628–0.820) for the prediction of 30-day mortality and 7-day mortality, respectively. The overall percentage of correct prediction in this regard was 88% and 79% in the validation cohorts. Lastly, the AUC in an independent external validation cohort was 0.721 (CI 0.633–0.808) and 0.750 (CI 0.657–0.842), respectively. Interpretation Radiomics parameters of EAT are strongly associated with mortality in patients with APE. Clinical trial number Not applicable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
闪999发布了新的文献求助10
3秒前
3秒前
星辰大海应助站住辣条采纳,获得30
3秒前
笑一笑完成签到,获得积分10
3秒前
3秒前
怡然的怜烟应助PU聚氨酯采纳,获得30
5秒前
老实天菱发布了新的文献求助10
6秒前
7秒前
Oui完成签到 ,获得积分10
7秒前
于丽萍发布了新的文献求助10
8秒前
LL完成签到 ,获得积分10
8秒前
xxfsx应助酷酷的问丝采纳,获得20
8秒前
8秒前
9秒前
拼搏的青雪完成签到 ,获得积分10
9秒前
Chai发布了新的文献求助10
9秒前
xxfsx应助温柔的伊采纳,获得10
9秒前
12秒前
了了发布了新的文献求助10
15秒前
boging发布了新的文献求助10
16秒前
陈小瑜完成签到,获得积分10
18秒前
英俊的铭应助闪999采纳,获得10
18秒前
affff完成签到 ,获得积分10
19秒前
22秒前
maguodrgon发布了新的文献求助10
22秒前
小宋发布了新的文献求助30
23秒前
小情绪发布了新的文献求助10
23秒前
量子星尘发布了新的文献求助10
24秒前
清河剑客发布了新的文献求助10
27秒前
SDD完成签到,获得积分10
27秒前
29秒前
ll发布了新的文献求助10
29秒前
czr完成签到,获得积分10
31秒前
充电宝应助科研通管家采纳,获得10
31秒前
邓佳鑫Alan应助科研通管家采纳,获得10
31秒前
32秒前
科研通AI6应助科研通管家采纳,获得30
32秒前
邓佳鑫Alan应助科研通管家采纳,获得10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425403
求助须知:如何正确求助?哪些是违规求助? 4539499
关于积分的说明 14168184
捐赠科研通 4457031
什么是DOI,文献DOI怎么找? 2444414
邀请新用户注册赠送积分活动 1435321
关于科研通互助平台的介绍 1412740