The renewable nature, high carbon content, and unique hierarchical structure of wood-derived carbon make it an optimal self-supporting electrode for energy storage. However, the limitations in specific surface area and electrical conductivity defects pose challenges to achieving satisfactory charge storage in wood-derived carbon electrodes. Therefore, exploring diverse and effective surface strategies is crucial for enhancing the electrochemical energy storage performance. Herein, a decoration technique for enhancing aesthetic appeal involves applying a metal-organic framework (Ni/Co-MOF) containing nickel and cobalt onto the inner walls of wood tracheids. The sequential modification steps include carbonization, oxidation activation, and acid-etching. The Ni/NiO/CoO-CW-4 electrode, made by acid-etching carbonized wood (CW) doped with nickel, nickel oxide, and cobalt oxide for 4 h, has excellent surface area and pore size distribution, high graphitization degree, and exceptional conductivity. Furthermore, surface modification optimizes the surface chemistry and phase composition, resulting in a 0.8 mm thick Ni/NiO/CoO-CW-4 electrode with an exceptionally high areal capacitance of 16.76 F cm