材料科学
掺杂剂
兴奋剂
离子
扫描电子显微镜
分析化学(期刊)
发光
基质(水族馆)
光致发光
光电子学
复合材料
化学
物理
海洋学
量子力学
色谱法
地质学
作者
Ahmed M. Hussein,Hasanain S. Azeez,Roaa A. Abdalrahman,Mukhlis M. Ismail,Sadeq H. Lafta
标识
DOI:10.1149/2162-8777/ad670e
摘要
We investigated the impact of doping ion type on the performance of a ZnO-based ammonia gas sensor to show the capability of these ions to achieve high-performance gas sensing at room temperature. A sol-gel method was used to synthesize both doped and undoped ZnO nanostructures, while the gas sensor device was made by casting ZnO onto a glass substrate for a uniform thin film. Then Al electrodes were attached to the film. The characterization was carried out via field-emission scanning electron microscopy, energy-dispersive spectroscopy, X-ray diffraction, UV–vis, Pl luminescence, Brunnauer-Emmett-Teller, I-V characteristic, and gas sensor setup device. PL measurement shows an increase in green emission spectra with Ba ion shifting the peaks from VO to VO + and VO + to VO ++ states. The gas sensor test at room temperature greatly enhances performance for certain ions. The Ba ions greatly influence gas sensor performance, increasing the response to 24 compared to 5 for undoped ZnO. The room-temperature enhancement achieved by the Ba ions could open the way to investigate more effective dopants for NH 3 gas sensors.
科研通智能强力驱动
Strongly Powered by AbleSci AI