We investigated the impact of doping ion type on the performance of a ZnO-based ammonia gas sensor to show the capability of these ions to achieve high-performance gas sensing at room temperature. A sol-gel method was used to synthesize both doped and undoped ZnO nanostructures, while the gas sensor device was made by casting ZnO onto a glass substrate for a uniform thin film. Then Al electrodes were attached to the film. The characterization was carried out via field-emission scanning electron microscopy, energy-dispersive spectroscopy, X-ray diffraction, UV–vis, Pl luminescence, Brunnauer-Emmett-Teller, I-V characteristic, and gas sensor setup device. PL measurement shows an increase in green emission spectra with Ba ion shifting the peaks from VO to VO + and VO + to VO ++ states. The gas sensor test at room temperature greatly enhances performance for certain ions. The Ba ions greatly influence gas sensor performance, increasing the response to 24 compared to 5 for undoped ZnO. The room-temperature enhancement achieved by the Ba ions could open the way to investigate more effective dopants for NH 3 gas sensors.