An arginine-rich nuclear localization signal (ArgiNLS) strategy for streamlined image segmentation of single cells

精氨酸 核定位序列 分割 信号(编程语言) 计算机视觉 人工智能 细胞生物学 计算机科学 化学 计算生物学 模式识别(心理学) 生物 生物化学 氨基酸 核心 程序设计语言
作者
Eric R. Szelenyi,Jovana Navarrete,Alexandria D. Murry,Yizhe Zhang,Kasey S. Girven,Lauren M. Kuo,Marcella M. Cline,Mollie Bernstein,Mariia Burdyniuk,Bryce Bowler,Nastacia L. Goodwin,Barbara Juarez,Larry S. Zweifel,Sam A. Golden
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:121 (32) 被引量:1
标识
DOI:10.1073/pnas.2320250121
摘要

High-throughput volumetric fluorescent microscopy pipelines can spatially integrate whole-brain structure and function at the foundational level of single cells. However, conventional fluorescent protein (FP) modifications used to discriminate single cells possess limited efficacy or are detrimental to cellular health. Here, we introduce a synthetic and nondeleterious nuclear localization signal (NLS) tag strategy, called “Arginine-rich NLS” (ArgiNLS), that optimizes genetic labeling and downstream image segmentation of single cells by restricting FP localization near-exclusively in the nucleus through a poly-arginine mechanism. A single N-terminal ArgiNLS tag provides modular nuclear restriction consistently across spectrally separate FP variants. ArgiNLS performance in vivo displays functional conservation across major cortical cell classes and in response to both local and systemic brain-wide AAV administration. Crucially, the high signal-to-noise ratio afforded by ArgiNLS enhances machine learning-automated segmentation of single cells due to rapid classifier training and enrichment of labeled cell detection within 2D brain sections or 3D volumetric whole-brain image datasets, derived from both staining-amplified and native signal. This genetic strategy provides a simple and flexible basis for precise image segmentation of genetically labeled single cells at scale and paired with behavioral procedures.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搬砖工完成签到,获得积分10
刚刚
33完成签到,获得积分10
1秒前
852应助稳重中心采纳,获得10
1秒前
xia发布了新的文献求助10
1秒前
1秒前
萌萌许完成签到,获得积分10
2秒前
韭菜仔完成签到,获得积分10
2秒前
英姑应助沉静从蓉采纳,获得10
3秒前
ZXQ发布了新的文献求助10
4秒前
yqhide完成签到,获得积分10
4秒前
只吃饭不洗碗完成签到,获得积分10
4秒前
没名字完成签到,获得积分10
5秒前
fjh应助满意采纳,获得30
5秒前
jxr完成签到,获得积分10
5秒前
5秒前
pluto应助东郭水云采纳,获得10
5秒前
情怀应助33采纳,获得10
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
所所应助李金洋采纳,获得10
8秒前
8秒前
段涂涂发布了新的文献求助10
8秒前
所所应助小鑫采纳,获得10
8秒前
直率沂完成签到,获得积分20
8秒前
林卷卷发布了新的文献求助10
9秒前
9秒前
lizike发布了新的文献求助10
9秒前
热心的天玉完成签到,获得积分20
9秒前
9秒前
123完成签到,获得积分10
10秒前
彭于晏应助难过大神采纳,获得10
10秒前
追光者发布了新的文献求助10
12秒前
852应助Rixxed采纳,获得10
13秒前
mio发布了新的文献求助20
13秒前
13秒前
Owen应助龙龙ff11_采纳,获得10
14秒前
默listening发布了新的文献求助10
14秒前
Bab完成签到,获得积分10
14秒前
共享精神应助追忆采纳,获得10
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958909
求助须知:如何正确求助?哪些是违规求助? 3505121
关于积分的说明 11122699
捐赠科研通 3236612
什么是DOI,文献DOI怎么找? 1788911
邀请新用户注册赠送积分活动 871431
科研通“疑难数据库(出版商)”最低求助积分说明 802794