Navigating challenges and solutions in quantitative photoacoustic imaging

生物医学中的光声成像 模态(人机交互) 概念证明 医学物理学 计算机科学 数据科学 人工智能 光学 物理 医学 操作系统
作者
Ruochong Zhang,Rabia’tul A’dawiah,Tristan Wen Jie Choo,Xiuting Li,Ghayathri Balasundaram,Qi Yi,Yonggeng Goh,Renzhe Bi,Malini Olivo
出处
期刊:Applied physics reviews [American Institute of Physics]
卷期号:11 (3) 被引量:7
标识
DOI:10.1063/5.0202401
摘要

Photoacoustic imaging, an emerging modality that seamlessly combines advantages of optical absorption contrast and ultrasound resolution, holds great promise for noninvasive imaging of biological tissues. Its applications span across diverse fields, such as dermatology, oncology, cardiology, and neurology. However, achieving accurate image reconstruction and physiological parameters quantification from raw photoacoustic signals presents a significant challenge. This challenge primarily arises from the inherent heterogeneity of tissues, encompassing variations in optical fluence and acoustic properties. In addition, incomplete information acquired from a limited view also leads to artifacts, image distortions, and reduced spatial resolution. Furthermore, robust spectral unmixing approach is another key step to restore the initial biochemical components' distribution with complex or unknown background absorption. To overcome these hurdles, researchers have proposed numerous state-of-the-art techniques, aiming to improve the accuracy and reliability of quantitative photoacoustic imaging (qPAI) in heterogeneous tissue. This review aims to comprehensively overview recent developments over the past decade, for addressing four main challenges frequently encountered in qPAI: limited-view reconstruction, acoustic heterogeneity, optical fluence fluctuations, and robust spectral unmixing, which serves as a reference for readers seeking to understand the specific challenges and corresponding solutions in this field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
美好的冰蓝完成签到 ,获得积分10
刚刚
lixiaorui发布了新的文献求助10
1秒前
科研通AI6应助江楠采纳,获得10
2秒前
酷波er应助雨雨爱薯条采纳,获得10
2秒前
852应助qq采纳,获得10
2秒前
3秒前
阳光谷发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
5秒前
机灵千萍完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
领导范儿应助XL神放采纳,获得10
6秒前
minmin发布了新的文献求助10
6秒前
pterionGao发布了新的文献求助10
6秒前
6秒前
badjack完成签到,获得积分10
7秒前
7秒前
ggg发布了新的文献求助10
8秒前
9秒前
神经网络模型完成签到,获得积分10
10秒前
10秒前
今后应助初遇之时最暖采纳,获得10
10秒前
11秒前
11秒前
共享精神应助阿宋采纳,获得10
11秒前
11秒前
suda发布了新的文献求助10
11秒前
12秒前
idannn发布了新的文献求助10
13秒前
派大星完成签到,获得积分20
14秒前
噗哩大王发布了新的文献求助30
14秒前
养生坤坤发布了新的文献求助10
14秒前
hexinyu发布了新的文献求助10
15秒前
15秒前
16秒前
qq发布了新的文献求助10
17秒前
王小白发布了新的文献求助10
18秒前
Tonson应助roooosewang采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469432
求助须知:如何正确求助?哪些是违规求助? 4572532
关于积分的说明 14336014
捐赠科研通 4499397
什么是DOI,文献DOI怎么找? 2465032
邀请新用户注册赠送积分活动 1453564
关于科研通互助平台的介绍 1428091