In this study, the comprehensive quality characteristics and proteome changes of snakehead (Channa argus) surimi gel under different atmospheric cold plasma (ACP) treatment times were systematically analyzed and compared. The results showed that the ubiquitin-associated proteins and heat shock proteins were activated after ACP treatment for 90 s (ACP90), thus inducing rearrangement of surimi structural proteins. Meanwhile, the increased hydrophobic interactions and disulfide bonds might strengthen the interactions among the myofibrillar protein, keratin, and type-I collagen, which led to the formation of a dense gel network. Moreover, the high nodality between actin and myosin promoted the regulation of muscle contraction by changing the spatial obstruction of their binding sites. These beneficial effects obviously contributed to the superior water-holding capacity (76.13%), gel strength (285.6 g·cm) and viscoelasticity of snakehead surimi in the ACP90 group. These results would provide some useful information for the in-depth and efficient processing of surimi products.