Model Attention Expansion for Few-Shot Class-Incremental Learning

计算机科学 人工智能 机器学习 班级(哲学) 判别式 嵌入
作者
Xuan Wang,Zhong Ji,Yunlong Yu,Yanwei Pang,Jungong Han
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 4419-4431 被引量:2
标识
DOI:10.1109/tip.2024.3434475
摘要

Few-Shot Class-Incremental Learning (FSCIL) aims at incrementally learning new knowledge from limited training examples without forgetting previous knowledge. However, we observe that existing methods face a challenge known as supervision collapse, where the model disproportionately emphasizes class-specific features of base classes at the detriment of novel class representations, leading to restricted cognitive capabilities. To alleviate this issue, we propose a new framework, Model aTtention Expansion for Few-Shot Class-Incremental Learning (MTE-FSCIL), aimed at expanding the model attention fields to improve transferability without compromising the discriminative capability for base classes. Specifically, the framework adopts a dual-stage training strategy, comprising pre-training and meta-training stages. In the pre-training stage, we present a new regularization technique, named the Reserver (RS) loss, to expand the global perception and reduce over-reliance on class-specific features by amplifying feature map activations. During the meta-training stage, we introduce the Repeller (RP) loss, a novel pair-based loss that promotes variation in representations and improves the model's recognition of sample uniqueness by scattering intra-class samples within the embedding space. Furthermore, we propose a Transformational Adaptation (TA) strategy to enable continuous incorporation of new knowledge from downstream tasks, thus facilitating cross-task knowledge transfer. Extensive experimental results on mini-ImageNet, CIFAR100, and CUB200 datasets demonstrate that our proposed framework consistently outperforms the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
平常的迎夏完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
隐形曼青应助秋澄采纳,获得10
2秒前
2秒前
4秒前
xzn发布了新的文献求助10
4秒前
hahaha发布了新的文献求助10
4秒前
4秒前
青云冰城发布了新的文献求助10
5秒前
oo发布了新的文献求助10
5秒前
5秒前
不倒翁37发布了新的文献求助10
6秒前
cmdan完成签到,获得积分10
6秒前
蓝溺完成签到,获得积分10
7秒前
邵小庆发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
桐桐应助cc采纳,获得10
9秒前
等待吐司应助欢喜代萱采纳,获得10
9秒前
ss完成签到 ,获得积分10
9秒前
刘乐发布了新的文献求助10
9秒前
柳觅夏发布了新的文献求助10
9秒前
Lucas应助芜湖芜湖采纳,获得10
10秒前
HOOW发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
13秒前
cytheria发布了新的文献求助10
13秒前
时间的过客完成签到,获得积分10
13秒前
HesperLxy发布了新的文献求助10
13秒前
SciGPT应助天天玩采纳,获得10
15秒前
15秒前
NexusExplorer应助cc采纳,获得10
15秒前
李爱国应助千尺焰采纳,获得10
16秒前
666发布了新的文献求助10
17秒前
美好斓发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5264674
求助须知:如何正确求助?哪些是违规求助? 4424909
关于积分的说明 13774672
捐赠科研通 4300019
什么是DOI,文献DOI怎么找? 2359586
邀请新用户注册赠送积分活动 1355696
关于科研通互助平台的介绍 1316961