Model Attention Expansion for Few-Shot Class-Incremental Learning

计算机科学 人工智能 机器学习 班级(哲学) 判别式 嵌入
作者
Xuan Wang,Zhong Ji,Yunlong Yu,Yanwei Pang,Jungong Han
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 4419-4431 被引量:2
标识
DOI:10.1109/tip.2024.3434475
摘要

Few-Shot Class-Incremental Learning (FSCIL) aims at incrementally learning new knowledge from limited training examples without forgetting previous knowledge. However, we observe that existing methods face a challenge known as supervision collapse, where the model disproportionately emphasizes class-specific features of base classes at the detriment of novel class representations, leading to restricted cognitive capabilities. To alleviate this issue, we propose a new framework, Model aTtention Expansion for Few-Shot Class-Incremental Learning (MTE-FSCIL), aimed at expanding the model attention fields to improve transferability without compromising the discriminative capability for base classes. Specifically, the framework adopts a dual-stage training strategy, comprising pre-training and meta-training stages. In the pre-training stage, we present a new regularization technique, named the Reserver (RS) loss, to expand the global perception and reduce over-reliance on class-specific features by amplifying feature map activations. During the meta-training stage, we introduce the Repeller (RP) loss, a novel pair-based loss that promotes variation in representations and improves the model's recognition of sample uniqueness by scattering intra-class samples within the embedding space. Furthermore, we propose a Transformational Adaptation (TA) strategy to enable continuous incorporation of new knowledge from downstream tasks, thus facilitating cross-task knowledge transfer. Extensive experimental results on mini-ImageNet, CIFAR100, and CUB200 datasets demonstrate that our proposed framework consistently outperforms the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
www完成签到,获得积分10
刚刚
1秒前
1秒前
222发布了新的文献求助10
1秒前
黄量杰成发布了新的文献求助10
2秒前
3秒前
3秒前
sansan完成签到 ,获得积分10
4秒前
manru发布了新的文献求助10
4秒前
4秒前
5秒前
ASIS完成签到,获得积分10
5秒前
刘祥发布了新的文献求助10
5秒前
虚拟的柠檬完成签到,获得积分10
6秒前
7秒前
run发布了新的文献求助50
8秒前
赵乂发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
lyt发布了新的文献求助10
9秒前
yunyueqixun完成签到 ,获得积分10
9秒前
倪侃发布了新的文献求助10
9秒前
时567完成签到,获得积分10
9秒前
manru完成签到,获得积分10
9秒前
10秒前
sure发布了新的文献求助10
10秒前
10秒前
11秒前
12秒前
12秒前
小郑不睡觉完成签到 ,获得积分10
12秒前
12秒前
13秒前
nenoaowu发布了新的文献求助10
13秒前
我是老大应助黄量杰成采纳,获得200
14秒前
Orange应助闲听花落采纳,获得10
14秒前
浮游应助222采纳,获得10
16秒前
Su应助misong采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
NexusExplorer应助初生西红柿采纳,获得10
17秒前
星辰大海应助科研通管家采纳,获得10
17秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125089
求助须知:如何正确求助?哪些是违规求助? 4329088
关于积分的说明 13489719
捐赠科研通 4163770
什么是DOI,文献DOI怎么找? 2282542
邀请新用户注册赠送积分活动 1283707
关于科研通互助平台的介绍 1222981