Model Attention Expansion for Few-Shot Class-Incremental Learning

计算机科学 人工智能 机器学习 班级(哲学) 判别式 嵌入
作者
Xuan Wang,Zhong Ji,Yunlong Yu,Yanwei Pang,Jungong Han
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 4419-4431 被引量:2
标识
DOI:10.1109/tip.2024.3434475
摘要

Few-Shot Class-Incremental Learning (FSCIL) aims at incrementally learning new knowledge from limited training examples without forgetting previous knowledge. However, we observe that existing methods face a challenge known as supervision collapse, where the model disproportionately emphasizes class-specific features of base classes at the detriment of novel class representations, leading to restricted cognitive capabilities. To alleviate this issue, we propose a new framework, Model aTtention Expansion for Few-Shot Class-Incremental Learning (MTE-FSCIL), aimed at expanding the model attention fields to improve transferability without compromising the discriminative capability for base classes. Specifically, the framework adopts a dual-stage training strategy, comprising pre-training and meta-training stages. In the pre-training stage, we present a new regularization technique, named the Reserver (RS) loss, to expand the global perception and reduce over-reliance on class-specific features by amplifying feature map activations. During the meta-training stage, we introduce the Repeller (RP) loss, a novel pair-based loss that promotes variation in representations and improves the model's recognition of sample uniqueness by scattering intra-class samples within the embedding space. Furthermore, we propose a Transformational Adaptation (TA) strategy to enable continuous incorporation of new knowledge from downstream tasks, thus facilitating cross-task knowledge transfer. Extensive experimental results on mini-ImageNet, CIFAR100, and CUB200 datasets demonstrate that our proposed framework consistently outperforms the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
飞快的盈关注了科研通微信公众号
3秒前
1234567发布了新的文献求助10
3秒前
weiping完成签到,获得积分10
4秒前
彳系禾发布了新的文献求助10
4秒前
Jasper应助两袖清风采纳,获得10
6秒前
zhan发布了新的文献求助10
6秒前
思源应助科研通管家采纳,获得10
7秒前
传奇3应助科研通管家采纳,获得10
7秒前
天天快乐应助科研通管家采纳,获得10
7秒前
orixero应助科研通管家采纳,获得10
7秒前
星辰大海应助科研通管家采纳,获得10
7秒前
情怀应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
7秒前
深情安青应助酚羟基装醇采纳,获得10
7秒前
山药汤完成签到,获得积分10
8秒前
李爱国应助money采纳,获得10
9秒前
9秒前
bkagyin应助飞兰采纳,获得10
11秒前
17秒前
蓝色天空完成签到,获得积分10
17秒前
18秒前
18秒前
乐观的箭头完成签到,获得积分10
20秒前
SCH_zhu发布了新的文献求助10
21秒前
飞兰发布了新的文献求助10
22秒前
23秒前
23秒前
24秒前
危机的夏兰完成签到,获得积分10
25秒前
大龙发布了新的文献求助10
25秒前
黄蛋黄发布了新的文献求助10
26秒前
两袖清风发布了新的文献求助10
29秒前
30秒前
32秒前
永远55度完成签到,获得积分10
33秒前
33秒前
胡萝卜发布了新的文献求助10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Corrosion and corrosion control 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5373655
求助须知:如何正确求助?哪些是违规求助? 4499675
关于积分的说明 14007024
捐赠科研通 4406529
什么是DOI,文献DOI怎么找? 2420537
邀请新用户注册赠送积分活动 1413340
关于科研通互助平台的介绍 1389891