Model Attention Expansion for Few-Shot Class-Incremental Learning

计算机科学 人工智能 机器学习 班级(哲学) 判别式 嵌入
作者
Xuan Wang,Zhong Ji,Yunlong Yu,Yanwei Pang,Jungong Han
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 4419-4431
标识
DOI:10.1109/tip.2024.3434475
摘要

Few-Shot Class-Incremental Learning (FSCIL) aims at incrementally learning new knowledge from limited training examples without forgetting previous knowledge. However, we observe that existing methods face a challenge known as supervision collapse, where the model disproportionately emphasizes class-specific features of base classes at the detriment of novel class representations, leading to restricted cognitive capabilities. To alleviate this issue, we propose a new framework, Model aTtention Expansion for Few-Shot Class-Incremental Learning (MTE-FSCIL), aimed at expanding the model attention fields to improve transferability without compromising the discriminative capability for base classes. Specifically, the framework adopts a dual-stage training strategy, comprising pre-training and meta-training stages. In the pre-training stage, we present a new regularization technique, named the Reserver (RS) loss, to expand the global perception and reduce over-reliance on class-specific features by amplifying feature map activations. During the meta-training stage, we introduce the Repeller (RP) loss, a novel pair-based loss that promotes variation in representations and improves the model's recognition of sample uniqueness by scattering intra-class samples within the embedding space. Furthermore, we propose a Transformational Adaptation (TA) strategy to enable continuous incorporation of new knowledge from downstream tasks, thus facilitating cross-task knowledge transfer. Extensive experimental results on mini-ImageNet, CIFAR100, and CUB200 datasets demonstrate that our proposed framework consistently outperforms the state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lsq108发布了新的文献求助10
刚刚
乐观寻绿发布了新的文献求助20
1秒前
隐形曼青应助踏实乌冬面采纳,获得10
1秒前
天天快乐应助niuniu采纳,获得10
2秒前
坚强的广山应助神勇的鸽子采纳,获得200
2秒前
bioyong发布了新的文献求助10
2秒前
忧虑的访梦完成签到,获得积分10
4秒前
所所应助SuperFAN采纳,获得10
5秒前
浮生发布了新的文献求助10
5秒前
情怀应助xty采纳,获得10
6秒前
彭于晏应助bioyong采纳,获得10
7秒前
8秒前
Ada完成签到,获得积分10
8秒前
lulalula完成签到,获得积分10
9秒前
something发布了新的文献求助10
9秒前
gggg发布了新的文献求助10
12秒前
杨。。完成签到 ,获得积分10
12秒前
在水一方应助失眠尔柳采纳,获得10
13秒前
小巧曲奇发布了新的文献求助10
14秒前
15秒前
16秒前
橓顺发布了新的文献求助10
16秒前
Yziii举报动听的语堂求助涉嫌违规
17秒前
17秒前
荣和发布了新的文献求助10
18秒前
打打应助雨季采纳,获得10
18秒前
19秒前
景景完成签到,获得积分20
20秒前
Finger发布了新的文献求助10
21秒前
浮生发布了新的文献求助100
22秒前
Lorene发布了新的文献求助10
23秒前
niuniu发布了新的文献求助10
23秒前
Isabel完成签到,获得积分10
24秒前
所所应助曾子曰采纳,获得30
24秒前
24秒前
ZXneuro完成签到,获得积分10
24秒前
科研通AI2S应助九香虫采纳,获得10
25秒前
孜然味的拜拜肉完成签到,获得积分10
25秒前
25秒前
拼搏尔风完成签到,获得积分10
30秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3262821
求助须知:如何正确求助?哪些是违规求助? 2903441
关于积分的说明 8325296
捐赠科研通 2573448
什么是DOI,文献DOI怎么找? 1398306
科研通“疑难数据库(出版商)”最低求助积分说明 654097
邀请新用户注册赠送积分活动 632686