Model Attention Expansion for Few-Shot Class-Incremental Learning

计算机科学 人工智能 机器学习 班级(哲学) 判别式 嵌入
作者
Xuan Wang,Zhong Ji,Yunlong Yu,Yanwei Pang,Jungong Han
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 4419-4431 被引量:2
标识
DOI:10.1109/tip.2024.3434475
摘要

Few-Shot Class-Incremental Learning (FSCIL) aims at incrementally learning new knowledge from limited training examples without forgetting previous knowledge. However, we observe that existing methods face a challenge known as supervision collapse, where the model disproportionately emphasizes class-specific features of base classes at the detriment of novel class representations, leading to restricted cognitive capabilities. To alleviate this issue, we propose a new framework, Model aTtention Expansion for Few-Shot Class-Incremental Learning (MTE-FSCIL), aimed at expanding the model attention fields to improve transferability without compromising the discriminative capability for base classes. Specifically, the framework adopts a dual-stage training strategy, comprising pre-training and meta-training stages. In the pre-training stage, we present a new regularization technique, named the Reserver (RS) loss, to expand the global perception and reduce over-reliance on class-specific features by amplifying feature map activations. During the meta-training stage, we introduce the Repeller (RP) loss, a novel pair-based loss that promotes variation in representations and improves the model's recognition of sample uniqueness by scattering intra-class samples within the embedding space. Furthermore, we propose a Transformational Adaptation (TA) strategy to enable continuous incorporation of new knowledge from downstream tasks, thus facilitating cross-task knowledge transfer. Extensive experimental results on mini-ImageNet, CIFAR100, and CUB200 datasets demonstrate that our proposed framework consistently outperforms the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
FashionBoy应助ocean采纳,获得20
刚刚
刚刚
刚刚
xi完成签到,获得积分10
刚刚
777发布了新的文献求助10
刚刚
老实幻姬发布了新的文献求助10
刚刚
2秒前
CodeCraft应助leicaixia采纳,获得30
2秒前
我是老大应助羊觅夏采纳,获得10
2秒前
Owen应助空白采纳,获得10
3秒前
3秒前
Angel完成签到,获得积分10
4秒前
rnanoda发布了新的文献求助10
5秒前
桐桐应助zjy采纳,获得30
5秒前
木秀发布了新的文献求助30
5秒前
可爱曼青发布了新的文献求助10
5秒前
6秒前
金鱼的眼泪完成签到,获得积分20
6秒前
bbbjddd发布了新的文献求助10
7秒前
科目三应助lgg采纳,获得10
8秒前
llly发布了新的文献求助10
8秒前
tx发布了新的文献求助10
8秒前
Canon发布了新的文献求助10
8秒前
浮游应助pulapiu采纳,获得10
9秒前
科研通AI6应助小鹿采纳,获得10
9秒前
9秒前
矮小的邪欢完成签到,获得积分10
10秒前
852应助777采纳,获得10
10秒前
11秒前
yeyeye完成签到,获得积分10
12秒前
12秒前
达利园发布了新的文献求助10
12秒前
海鲜完成签到,获得积分10
13秒前
ardejiang发布了新的文献求助10
13秒前
斯文败类应助y蓓蓓采纳,获得10
13秒前
默默完成签到 ,获得积分10
14秒前
赵政宇发布了新的文献求助50
15秒前
bbbjddd完成签到,获得积分10
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
量子光学理论与实验技术 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5329117
求助须知:如何正确求助?哪些是违规求助? 4468659
关于积分的说明 13906220
捐赠科研通 4361687
什么是DOI,文献DOI怎么找? 2395919
邀请新用户注册赠送积分活动 1389377
关于科研通互助平台的介绍 1360181