Model Attention Expansion for Few-Shot Class-Incremental Learning

计算机科学 人工智能 机器学习 班级(哲学) 判别式 嵌入
作者
Xuan Wang,Zhong Ji,Yunlong Yu,Yanwei Pang,Jungong Han
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 4419-4431 被引量:2
标识
DOI:10.1109/tip.2024.3434475
摘要

Few-Shot Class-Incremental Learning (FSCIL) aims at incrementally learning new knowledge from limited training examples without forgetting previous knowledge. However, we observe that existing methods face a challenge known as supervision collapse, where the model disproportionately emphasizes class-specific features of base classes at the detriment of novel class representations, leading to restricted cognitive capabilities. To alleviate this issue, we propose a new framework, Model aTtention Expansion for Few-Shot Class-Incremental Learning (MTE-FSCIL), aimed at expanding the model attention fields to improve transferability without compromising the discriminative capability for base classes. Specifically, the framework adopts a dual-stage training strategy, comprising pre-training and meta-training stages. In the pre-training stage, we present a new regularization technique, named the Reserver (RS) loss, to expand the global perception and reduce over-reliance on class-specific features by amplifying feature map activations. During the meta-training stage, we introduce the Repeller (RP) loss, a novel pair-based loss that promotes variation in representations and improves the model's recognition of sample uniqueness by scattering intra-class samples within the embedding space. Furthermore, we propose a Transformational Adaptation (TA) strategy to enable continuous incorporation of new knowledge from downstream tasks, thus facilitating cross-task knowledge transfer. Extensive experimental results on mini-ImageNet, CIFAR100, and CUB200 datasets demonstrate that our proposed framework consistently outperforms the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
花花123发布了新的文献求助10
刚刚
NexusExplorer应助程洁素采纳,获得10
刚刚
科研通AI6应助年轻迪奥采纳,获得10
1秒前
Healer完成签到,获得积分10
2秒前
2秒前
西瓜完成签到 ,获得积分10
3秒前
Liyuan发布了新的文献求助10
4秒前
4秒前
4秒前
无花果应助二悬铃木采纳,获得10
4秒前
4秒前
5秒前
Lucas应助超人不会飞采纳,获得10
5秒前
gq0401完成签到,获得积分10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
zcl应助科研通管家采纳,获得50
5秒前
bonnie应助科研通管家采纳,获得30
5秒前
bkagyin应助科研通管家采纳,获得10
5秒前
Bao应助科研通管家采纳,获得20
5秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
汉青完成签到,获得积分10
6秒前
NexusExplorer应助科研通管家采纳,获得10
6秒前
Loooong应助科研通管家采纳,获得20
6秒前
科目三应助科研通管家采纳,获得10
6秒前
略略略爱完成签到 ,获得积分10
6秒前
6秒前
852应助科研通管家采纳,获得10
6秒前
领导范儿应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
QQ发布了新的文献求助10
7秒前
xyy001完成签到,获得积分10
7秒前
斯文败类应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
FashionBoy应助科研通管家采纳,获得10
7秒前
nnnnnnxh发布了新的文献求助10
7秒前
7秒前
顺利晓蓝完成签到,获得积分10
7秒前
脑洞疼应助科研通管家采纳,获得10
7秒前
斯文败类应助科研通管家采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5285920
求助须知:如何正确求助?哪些是违规求助? 4438798
关于积分的说明 13818833
捐赠科研通 4320377
什么是DOI,文献DOI怎么找? 2371398
邀请新用户注册赠送积分活动 1366944
关于科研通互助平台的介绍 1330406