The accuracy of markerless motion capture combined with computer vision techniques for measuring running kinematics

运动学 矢状面 人工智能 运动捕捉 计算机科学 金标准(测试) 计算机视觉 脚踝 膝关节屈曲 运动分析 运动(物理) 医学 口腔正畸科 物理 外科 解剖 放射科 经典力学
作者
Bas Van Hooren,Noah Pecasse,Kenneth Meijer,J M N Hans Essers
出处
期刊:Scandinavian Journal of Medicine & Science in Sports [Wiley]
卷期号:33 (6): 966-978 被引量:12
标识
DOI:10.1111/sms.14319
摘要

Abstract Background Markerless motion capture based on low‐cost 2‐D video analysis in combination with computer vision techniques has the potential to provide accurate analysis of running technique in both a research and clinical setting. However, the accuracy of markerless motion capture for assessing running kinematics compared to a gold‐standard approach remains largely unexplored. Objective Here, we investigate the accuracy of custom‐trained (DeepLabCut) and existing (OpenPose) computer vision techniques for assessing sagittal‐plane hip, knee, and ankle running kinematics at speeds of 2.78 and 3.33 m s −1 as compared to gold‐standard marker‐based motion capture. Methods Differences between the markerless and marker‐based approaches were assessed using statistical parameter mapping and expressed as root mean squared errors (RMSEs). Results After temporal alignment and offset removal, both DeepLabCut and OpenPose showed no significant differences with the marker‐based approach at 2.78 m s −1 , but some significant differences remained at 3.33 m s −1 . At 2.78 m s −1 , RMSEs were 5.07, 7.91, and 5.60, and 5.92, 7.81, and 5.66 degrees for the hip, knee, and ankle for DeepLabCut and OpenPose, respectively. At 3.33 m s −1 , RMSEs were 7.40, 10.9, 8.01, and 4.95, 7.45, and 5.76 for the hip, knee, and ankle for DeepLabCut and OpenPose, respectively. Conclusion The differences between OpenPose and the marker‐based method were in line with or smaller than reported between other kinematic analysis methods and marker‐based methods, while these differences were larger for DeepLabCut. Since the accuracy differed between individuals, OpenPose may be most useful to facilitate large‐scale in‐field data collection and investigation of group effects rather than individual‐level analyses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张先生完成签到,获得积分10
3秒前
4秒前
5秒前
丘比特应助yayan采纳,获得10
5秒前
没有银发布了新的文献求助10
6秒前
陶醉笑蓝完成签到,获得积分20
7秒前
9秒前
细腻的山水完成签到,获得积分20
9秒前
11秒前
12秒前
Apt完成签到,获得积分10
14秒前
16秒前
义气水杯完成签到,获得积分10
17秒前
17秒前
没有银完成签到,获得积分10
17秒前
www完成签到,获得积分10
18秒前
18秒前
KK发布了新的文献求助10
19秒前
飞驰的羊驼完成签到 ,获得积分10
20秒前
www发布了新的文献求助10
21秒前
1贾发布了新的文献求助10
22秒前
舒心豪英完成签到 ,获得积分10
23秒前
24秒前
大模型应助生命化育采纳,获得10
24秒前
JUST完成签到,获得积分10
25秒前
25秒前
猩猩发布了新的文献求助10
29秒前
情怀应助平常之槐采纳,获得10
29秒前
fairy发布了新的文献求助30
29秒前
科研通AI2S应助1贾采纳,获得10
31秒前
乐观的颦发布了新的文献求助10
32秒前
33秒前
XIEH完成签到,获得积分10
35秒前
35秒前
35秒前
KK完成签到,获得积分10
36秒前
39秒前
dan1029发布了新的文献求助10
40秒前
莎莎发布了新的文献求助10
40秒前
丘比特应助hinamo采纳,获得10
41秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3259778
求助须知:如何正确求助?哪些是违规求助? 2901272
关于积分的说明 8314891
捐赠科研通 2570789
什么是DOI,文献DOI怎么找? 1396675
科研通“疑难数据库(出版商)”最低求助积分说明 653554
邀请新用户注册赠送积分活动 631853