Explainable Deep Learning for Supervised Seismic Facies Classification Using Intrinsic Method

计算机科学 人工智能 分类器(UML) 人工神经网络 机器学习 深度学习 代表(政治) 领域(数学) 地球物理学 地质学 古生物学 数学 构造盆地 政治 政治学 纯数学 法学
作者
Kyubo Noh,Dowan Kim,Joongmoo Byun
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-11 被引量:9
标识
DOI:10.1109/tgrs.2023.3236500
摘要

Deep-learning (DL) techniques have been proposed to solve geophysical seismic facies classification problems without introducing the subjectivity of human interpreters’ decisions. However, such DL algorithms are “black boxes” by nature, and the underlying basis can be hardly interpreted. Subjectivity is therefore often introduced during the quality control process, and any interpretation of DL models can become an important source of information. To provide a such degree of interpretation and retain a higher level of human intervention, the development and application of explainable DL methods have been explored. To showcase the usefulness of such methods in the field of geoscience, we utilize a prototype-based neural network (NN) for the seismic facies classification problem. The “prototype” vectors, jointly learned to have the stereotypical qualities of a certain label, form a set of representative samples. The interpretable component thereby transforms “black boxes” into “gray boxes.” We demonstrate how prototypes can be used to explain NN methods by directly inspecting key functional components. We describe substantial explanations in three ways of examining: 1) prototypes’ corresponding input–output pairs; 2) the values generated at the specific explainable layer; and 3) the numerical structure of specific shallow layers located between the interpretable latent prototype layer and an output layer. Most importantly, the series of interpretations shows how geophysical knowledge can be used to understand the actual function of the seismic facies classifier and therefore help the DL’s quality control process. The method is applicable to many geoscientific classification problems when in-depth interpretations of NN classifiers are required.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
爆米花应助有热心愿意采纳,获得10
1秒前
开放思烟发布了新的文献求助10
1秒前
谨慎的铭完成签到 ,获得积分10
2秒前
大锤哥完成签到,获得积分10
2秒前
2秒前
2秒前
lxl98完成签到,获得积分10
2秒前
2秒前
初空月儿发布了新的文献求助10
3秒前
刘耳朵发布了新的文献求助10
3秒前
jxg发布了新的文献求助10
3秒前
小马甲应助美嘉美采纳,获得30
3秒前
无敌吴硕完成签到,获得积分10
4秒前
华山小将发布了新的文献求助10
4秒前
羊青丝完成签到,获得积分10
5秒前
5秒前
lxl98发布了新的文献求助10
5秒前
6秒前
海的声音发布了新的文献求助10
6秒前
6秒前
6秒前
桑涣发布了新的文献求助10
7秒前
慕青发布了新的文献求助10
7秒前
7秒前
今后应助jxg采纳,获得30
7秒前
汉堡包应助初空月儿采纳,获得10
9秒前
9秒前
CodeCraft应助米mi采纳,获得10
10秒前
11秒前
Liar应助Yeah采纳,获得10
11秒前
一枚青椒应助淡淡绮玉采纳,获得10
12秒前
Dreamer0422发布了新的文献求助10
12秒前
13秒前
王玄琳完成签到,获得积分10
13秒前
loyalll发布了新的文献求助10
14秒前
Akim应助刘耳朵采纳,获得10
14秒前
14秒前
14秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152731
求助须知:如何正确求助?哪些是违规求助? 2803968
关于积分的说明 7856424
捐赠科研通 2461663
什么是DOI,文献DOI怎么找? 1310474
科研通“疑难数据库(出版商)”最低求助积分说明 629233
版权声明 601782