Explainable Deep Learning for Supervised Seismic Facies Classification Using Intrinsic Method

计算机科学 人工智能 分类器(UML) 人工神经网络 机器学习 深度学习 代表(政治) 领域(数学) 地球物理学 地质学 古生物学 数学 构造盆地 政治 政治学 纯数学 法学
作者
Kyubo Noh,Dowan Kim,Joongmoo Byun
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-11 被引量:9
标识
DOI:10.1109/tgrs.2023.3236500
摘要

Deep-learning (DL) techniques have been proposed to solve geophysical seismic facies classification problems without introducing the subjectivity of human interpreters’ decisions. However, such DL algorithms are “black boxes” by nature, and the underlying basis can be hardly interpreted. Subjectivity is therefore often introduced during the quality control process, and any interpretation of DL models can become an important source of information. To provide a such degree of interpretation and retain a higher level of human intervention, the development and application of explainable DL methods have been explored. To showcase the usefulness of such methods in the field of geoscience, we utilize a prototype-based neural network (NN) for the seismic facies classification problem. The “prototype” vectors, jointly learned to have the stereotypical qualities of a certain label, form a set of representative samples. The interpretable component thereby transforms “black boxes” into “gray boxes.” We demonstrate how prototypes can be used to explain NN methods by directly inspecting key functional components. We describe substantial explanations in three ways of examining: 1) prototypes’ corresponding input–output pairs; 2) the values generated at the specific explainable layer; and 3) the numerical structure of specific shallow layers located between the interpretable latent prototype layer and an output layer. Most importantly, the series of interpretations shows how geophysical knowledge can be used to understand the actual function of the seismic facies classifier and therefore help the DL’s quality control process. The method is applicable to many geoscientific classification problems when in-depth interpretations of NN classifiers are required.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zho发布了新的文献求助30
刚刚
刚刚
cc只会嘻嘻完成签到 ,获得积分10
刚刚
zink驳回了ding应助
刚刚
习习发布了新的文献求助10
刚刚
经法发布了新的文献求助10
1秒前
1秒前
1秒前
tong完成签到,获得积分10
1秒前
L~完成签到,获得积分10
1秒前
kyokukou完成签到,获得积分10
1秒前
xiaofeiyu完成签到,获得积分10
1秒前
大力曲奇完成签到,获得积分10
2秒前
乐乐应助崔梦楠采纳,获得10
2秒前
2秒前
2秒前
无奈梦岚完成签到,获得积分10
2秒前
yug发布了新的文献求助10
2秒前
蒋时晏完成签到,获得积分0
3秒前
JamesPei应助zz采纳,获得10
3秒前
MADKAI发布了新的文献求助10
3秒前
3秒前
脑洞疼应助Leexxxhaoo采纳,获得10
4秒前
4秒前
4秒前
RC_Wang应助东东采纳,获得10
4秒前
大脸妹发布了新的文献求助10
4秒前
两张发布了新的文献求助10
5秒前
5秒前
Akim应助执着的小蘑菇采纳,获得10
5秒前
调研昵称发布了新的文献求助10
5秒前
念念发布了新的文献求助10
6秒前
畅快的鱼发布了新的文献求助10
6秒前
搞怪藏今完成签到 ,获得积分10
7秒前
yu发布了新的文献求助10
7秒前
7秒前
qifa发布了新的文献求助10
7秒前
kingwhitewing完成签到,获得积分10
7秒前
8秒前
WTT发布了新的文献求助10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678