ReduMixDTI: Prediction of Drug–Target Interaction with Feature Redundancy Reduction and Interpretable Attention Mechanism

可解释性 计算机科学 人工智能 冗余(工程) 机器学习 特征(语言学) 图形 模式识别(心理学) 理论计算机科学 语言学 操作系统 哲学
作者
Mingqing Liu,Xuechun Meng,Yiyang Mao,Hongqi Li,Ji Liu
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
被引量:6
标识
DOI:10.1021/acs.jcim.4c01554
摘要

Identifying drug–target interactions (DTIs) is essential for drug discovery and development. Existing deep learning approaches to DTI prediction often employ powerful feature encoders to represent drugs and targets holistically, which usually cause significant redundancy and noise by neglecting the restricted binding regions. Furthermore, many previous DTI networks ignore or simplify the complex intermolecular interaction process involving diverse binding types, which significantly limits both predictive ability and interpretability. We propose ReduMixDTI, an end-to-end model that addresses feature redundancy and explicitly captures complex local interactions for DTI prediction. In this study, drug and target features are encoded by using graph neural networks and convolutional neural networks, respectively. These features are refined from channel and spatial perspectives to enhance the representations. The proposed attention mechanism explicitly models pairwise interactions between drug and target substructures, improving the model's understanding of binding processes. In extensive comparisons with seven state-of-the-art methods, ReduMixDTI demonstrates superior performance across three benchmark data sets and external test sets reflecting real-world scenarios. Additionally, we perform comprehensive ablation studies and visualize protein attention weights to enhance the interpretability. The results confirm that ReduMixDTI serves as a robust and interpretable model for reducing feature redundancy, contributing to advances in DTI prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Zyj完成签到,获得积分20
1秒前
MeSs发布了新的文献求助10
1秒前
2秒前
occupy发布了新的文献求助10
2秒前
阿嘉完成签到,获得积分10
2秒前
2秒前
3秒前
idemipere发布了新的文献求助10
3秒前
追逐完成签到 ,获得积分10
4秒前
4秒前
5秒前
府中园马发布了新的文献求助10
5秒前
Duffy完成签到,获得积分10
6秒前
小青椒应助fangzhi采纳,获得60
6秒前
price发布了新的文献求助10
6秒前
7秒前
9秒前
MeSs完成签到,获得积分10
9秒前
9秒前
思柔完成签到,获得积分10
9秒前
gorgeous发布了新的文献求助30
10秒前
10秒前
英姑应助MM采纳,获得20
11秒前
12秒前
Andyfragrance完成签到,获得积分10
12秒前
科研通AI6应助simey采纳,获得10
12秒前
12秒前
善学以致用应助府中园马采纳,获得10
12秒前
white给white的求助进行了留言
12秒前
xuedan发布了新的文献求助10
13秒前
背英语发布了新的文献求助10
13秒前
玩命的靖仇完成签到,获得积分10
13秒前
13秒前
科研通AI6应助Zhusy采纳,获得10
14秒前
思源应助Zhusy采纳,获得10
14秒前
机灵的波比应助affff采纳,获得10
14秒前
tombo100发布了新的文献求助50
14秒前
14秒前
碧蓝的安露完成签到 ,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557071
求助须知:如何正确求助?哪些是违规求助? 4642352
关于积分的说明 14667621
捐赠科研通 4583738
什么是DOI,文献DOI怎么找? 2514386
邀请新用户注册赠送积分活动 1488750
关于科研通互助平台的介绍 1459336