ReduMixDTI: Prediction of Drug–Target Interaction with Feature Redundancy Reduction and Interpretable Attention Mechanism

可解释性 计算机科学 人工智能 冗余(工程) 机器学习 特征(语言学) 图形 模式识别(心理学) 理论计算机科学 语言学 操作系统 哲学
作者
Mingqing Liu,Xuechun Meng,Yiyang Mao,Hongqi Li,Ji Liu
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
被引量:6
标识
DOI:10.1021/acs.jcim.4c01554
摘要

Identifying drug–target interactions (DTIs) is essential for drug discovery and development. Existing deep learning approaches to DTI prediction often employ powerful feature encoders to represent drugs and targets holistically, which usually cause significant redundancy and noise by neglecting the restricted binding regions. Furthermore, many previous DTI networks ignore or simplify the complex intermolecular interaction process involving diverse binding types, which significantly limits both predictive ability and interpretability. We propose ReduMixDTI, an end-to-end model that addresses feature redundancy and explicitly captures complex local interactions for DTI prediction. In this study, drug and target features are encoded by using graph neural networks and convolutional neural networks, respectively. These features are refined from channel and spatial perspectives to enhance the representations. The proposed attention mechanism explicitly models pairwise interactions between drug and target substructures, improving the model's understanding of binding processes. In extensive comparisons with seven state-of-the-art methods, ReduMixDTI demonstrates superior performance across three benchmark data sets and external test sets reflecting real-world scenarios. Additionally, we perform comprehensive ablation studies and visualize protein attention weights to enhance the interpretability. The results confirm that ReduMixDTI serves as a robust and interpretable model for reducing feature redundancy, contributing to advances in DTI prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ADDED完成签到,获得积分10
刚刚
1秒前
zrl发布了新的文献求助10
1秒前
3秒前
马格发布了新的文献求助10
3秒前
4秒前
热心夏天发布了新的文献求助10
4秒前
yumi完成签到,获得积分10
5秒前
包容代芹发布了新的文献求助10
5秒前
食杂砸发布了新的文献求助10
6秒前
CipherSage应助zzz采纳,获得10
7秒前
Yasmine完成签到 ,获得积分10
8秒前
MiaoRui完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
丘比特应助if采纳,获得10
10秒前
量子星尘发布了新的文献求助10
11秒前
Vivid完成签到,获得积分10
11秒前
时丶倾发布了新的文献求助10
13秒前
13秒前
semigreen完成签到 ,获得积分10
14秒前
木木发布了新的文献求助10
15秒前
夜雨完成签到,获得积分10
15秒前
木木木熙完成签到,获得积分10
15秒前
哈哈哈哈发布了新的文献求助10
15秒前
Lucia完成签到 ,获得积分10
16秒前
17秒前
18秒前
孙颖发布了新的文献求助10
18秒前
seedcode完成签到,获得积分10
18秒前
早睡早起身体好Q完成签到 ,获得积分10
18秒前
田様应助木木采纳,获得10
20秒前
20秒前
21秒前
22秒前
罗攀发布了新的文献求助10
22秒前
22秒前
22秒前
luo完成签到,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646495
求助须知:如何正确求助?哪些是违规求助? 4771505
关于积分的说明 15035374
捐赠科研通 4805305
什么是DOI,文献DOI怎么找? 2569593
邀请新用户注册赠送积分活动 1526581
关于科研通互助平台的介绍 1485858