ReduMixDTI: Prediction of Drug–Target Interaction with Feature Redundancy Reduction and Interpretable Attention Mechanism

可解释性 计算机科学 人工智能 冗余(工程) 机器学习 特征(语言学) 图形 模式识别(心理学) 理论计算机科学 哲学 语言学 操作系统
作者
Mingqing Liu,Xuechun Meng,Yiyang Mao,Hongqi Li,Ji Liu
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
标识
DOI:10.1021/acs.jcim.4c01554
摘要

Identifying drug–target interactions (DTIs) is essential for drug discovery and development. Existing deep learning approaches to DTI prediction often employ powerful feature encoders to represent drugs and targets holistically, which usually cause significant redundancy and noise by neglecting the restricted binding regions. Furthermore, many previous DTI networks ignore or simplify the complex intermolecular interaction process involving diverse binding types, which significantly limits both predictive ability and interpretability. We propose ReduMixDTI, an end-to-end model that addresses feature redundancy and explicitly captures complex local interactions for DTI prediction. In this study, drug and target features are encoded by using graph neural networks and convolutional neural networks, respectively. These features are refined from channel and spatial perspectives to enhance the representations. The proposed attention mechanism explicitly models pairwise interactions between drug and target substructures, improving the model's understanding of binding processes. In extensive comparisons with seven state-of-the-art methods, ReduMixDTI demonstrates superior performance across three benchmark data sets and external test sets reflecting real-world scenarios. Additionally, we perform comprehensive ablation studies and visualize protein attention weights to enhance the interpretability. The results confirm that ReduMixDTI serves as a robust and interpretable model for reducing feature redundancy, contributing to advances in DTI prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
靜心完成签到,获得积分10
刚刚
充电宝应助fufu采纳,获得10
刚刚
ccxb1014ft发布了新的文献求助10
1秒前
MG发布了新的文献求助10
1秒前
李爱国应助ayayaya采纳,获得10
1秒前
527发布了新的文献求助200
1秒前
ganxinru发布了新的文献求助10
1秒前
韭菜盒子完成签到,获得积分10
2秒前
传奇3应助迪迦奥特曼采纳,获得10
3秒前
123完成签到,获得积分10
3秒前
3秒前
酷炫思天发布了新的文献求助10
3秒前
3秒前
3秒前
无限寄翠完成签到,获得积分10
3秒前
4秒前
调研昵称发布了新的文献求助10
4秒前
4秒前
1609855535完成签到,获得积分10
4秒前
田様应助苽峰采纳,获得10
4秒前
a1207732382发布了新的文献求助30
4秒前
周老师应助左右不为难采纳,获得10
5秒前
5秒前
解师完成签到,获得积分20
6秒前
Gurlstrian完成签到,获得积分10
6秒前
情怀应助qq采纳,获得10
6秒前
6秒前
打打应助言言采纳,获得10
7秒前
xl²-B完成签到,获得积分10
7秒前
陌上灬发布了新的文献求助10
7秒前
研友_8RlQ2n完成签到,获得积分10
7秒前
科研通AI2S应助外向的沅采纳,获得10
8秒前
8秒前
baikaishui发布了新的文献求助10
8秒前
jojo完成签到,获得积分10
8秒前
Reese发布了新的文献求助10
9秒前
MG完成签到,获得积分10
9秒前
疯狂的冰旋完成签到,获得积分10
9秒前
小李子发布了新的文献求助10
9秒前
10秒前
高分求助中
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Mantids of the euro-mediterranean area 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3440678
求助须知:如何正确求助?哪些是违规求助? 3037173
关于积分的说明 8967721
捐赠科研通 2725656
什么是DOI,文献DOI怎么找? 1495057
科研通“疑难数据库(出版商)”最低求助积分说明 691066
邀请新用户注册赠送积分活动 687754