ReduMixDTI: Prediction of Drug–Target Interaction with Feature Redundancy Reduction and Interpretable Attention Mechanism

可解释性 计算机科学 人工智能 冗余(工程) 机器学习 特征(语言学) 图形 模式识别(心理学) 理论计算机科学 语言学 操作系统 哲学
作者
Mingqing Liu,Xuechun Meng,Yiyang Mao,Hongqi Li,Ji Liu
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
被引量:6
标识
DOI:10.1021/acs.jcim.4c01554
摘要

Identifying drug–target interactions (DTIs) is essential for drug discovery and development. Existing deep learning approaches to DTI prediction often employ powerful feature encoders to represent drugs and targets holistically, which usually cause significant redundancy and noise by neglecting the restricted binding regions. Furthermore, many previous DTI networks ignore or simplify the complex intermolecular interaction process involving diverse binding types, which significantly limits both predictive ability and interpretability. We propose ReduMixDTI, an end-to-end model that addresses feature redundancy and explicitly captures complex local interactions for DTI prediction. In this study, drug and target features are encoded by using graph neural networks and convolutional neural networks, respectively. These features are refined from channel and spatial perspectives to enhance the representations. The proposed attention mechanism explicitly models pairwise interactions between drug and target substructures, improving the model's understanding of binding processes. In extensive comparisons with seven state-of-the-art methods, ReduMixDTI demonstrates superior performance across three benchmark data sets and external test sets reflecting real-world scenarios. Additionally, we perform comprehensive ablation studies and visualize protein attention weights to enhance the interpretability. The results confirm that ReduMixDTI serves as a robust and interpretable model for reducing feature redundancy, contributing to advances in DTI prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
zyd发布了新的文献求助10
3秒前
3秒前
萨摩耶完成签到,获得积分10
4秒前
5秒前
6秒前
谷谷发布了新的文献求助30
6秒前
7秒前
猪猪hero应助孙亦沈采纳,获得10
8秒前
8秒前
科研通AI2S应助忧郁的灵枫采纳,获得10
10秒前
专注的问寒应助科研通管家采纳,获得150
10秒前
隐形曼青应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
星辰大海应助科研通管家采纳,获得10
10秒前
BowieHuang应助科研通管家采纳,获得10
10秒前
BowieHuang应助科研通管家采纳,获得10
10秒前
英俊的铭应助科研通管家采纳,获得10
10秒前
英俊的铭应助科研通管家采纳,获得10
10秒前
辛勤凌旋完成签到,获得积分10
10秒前
buno应助科研通管家采纳,获得10
10秒前
buno应助科研通管家采纳,获得10
10秒前
爆米花应助科研通管家采纳,获得10
10秒前
李健应助科研通管家采纳,获得10
10秒前
脑洞疼应助科研通管家采纳,获得10
10秒前
香蕉诗蕊应助科研通管家采纳,获得10
10秒前
所所应助科研通管家采纳,获得10
11秒前
11秒前
香蕉诗蕊应助科研通管家采纳,获得10
11秒前
11秒前
小水完成签到,获得积分10
11秒前
tcf发布了新的文献求助10
12秒前
眼睛大夜白完成签到 ,获得积分10
12秒前
Rachel完成签到,获得积分10
13秒前
醉熏的身影完成签到 ,获得积分10
13秒前
Turley发布了新的文献求助10
14秒前
14秒前
彭于晏应助读研暴躁哥采纳,获得10
15秒前
李冰完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618411
求助须知:如何正确求助?哪些是违规求助? 4703270
关于积分的说明 14921904
捐赠科研通 4757391
什么是DOI,文献DOI怎么找? 2550076
邀请新用户注册赠送积分活动 1512904
关于科研通互助平台的介绍 1474299