ReduMixDTI: Prediction of Drug–Target Interaction with Feature Redundancy Reduction and Interpretable Attention Mechanism

可解释性 计算机科学 人工智能 冗余(工程) 机器学习 特征(语言学) 图形 模式识别(心理学) 理论计算机科学 语言学 操作系统 哲学
作者
Mingqing Liu,Xuechun Meng,Yiyang Mao,Hongqi Li,Ji Liu
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
被引量:6
标识
DOI:10.1021/acs.jcim.4c01554
摘要

Identifying drug–target interactions (DTIs) is essential for drug discovery and development. Existing deep learning approaches to DTI prediction often employ powerful feature encoders to represent drugs and targets holistically, which usually cause significant redundancy and noise by neglecting the restricted binding regions. Furthermore, many previous DTI networks ignore or simplify the complex intermolecular interaction process involving diverse binding types, which significantly limits both predictive ability and interpretability. We propose ReduMixDTI, an end-to-end model that addresses feature redundancy and explicitly captures complex local interactions for DTI prediction. In this study, drug and target features are encoded by using graph neural networks and convolutional neural networks, respectively. These features are refined from channel and spatial perspectives to enhance the representations. The proposed attention mechanism explicitly models pairwise interactions between drug and target substructures, improving the model's understanding of binding processes. In extensive comparisons with seven state-of-the-art methods, ReduMixDTI demonstrates superior performance across three benchmark data sets and external test sets reflecting real-world scenarios. Additionally, we perform comprehensive ablation studies and visualize protein attention weights to enhance the interpretability. The results confirm that ReduMixDTI serves as a robust and interpretable model for reducing feature redundancy, contributing to advances in DTI prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
划分发布了新的文献求助20
2秒前
优秀笑柳发布了新的文献求助10
4秒前
可靠幻然完成签到 ,获得积分10
4秒前
4秒前
BK发布了新的文献求助10
5秒前
Ying发布了新的文献求助30
6秒前
梁真真完成签到 ,获得积分10
6秒前
6秒前
6秒前
小逗比发布了新的文献求助10
6秒前
张佳乐发布了新的文献求助10
7秒前
7秒前
日出发布了新的文献求助10
7秒前
9秒前
陈陈发布了新的文献求助10
11秒前
嘿嘿应助北北采纳,获得30
11秒前
Twonej给1111的求助进行了留言
11秒前
12秒前
英俊的铭应助111采纳,获得10
14秒前
Victor完成签到 ,获得积分10
16秒前
joxes发布了新的文献求助10
17秒前
17秒前
Simon_chat完成签到,获得积分10
19秒前
传奇3应助BK采纳,获得10
19秒前
锵锵锵应助安静初瑶采纳,获得10
20秒前
我是老大应助Lusteri采纳,获得10
20秒前
22秒前
23秒前
浮游应助djbj2022采纳,获得10
24秒前
28秒前
优秀笑柳完成签到,获得积分10
28秒前
丘比特应助trussie采纳,获得10
28秒前
Cherish完成签到,获得积分10
29秒前
111完成签到,获得积分10
29秒前
量子星尘发布了新的文献求助10
29秒前
Owen应助马上飞上宇宙采纳,获得10
30秒前
善学以致用应助jc采纳,获得10
30秒前
32秒前
划分完成签到,获得积分10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5638000
求助须知:如何正确求助?哪些是违规求助? 4744481
关于积分的说明 15000910
捐赠科研通 4796182
什么是DOI,文献DOI怎么找? 2562369
邀请新用户注册赠送积分活动 1521868
关于科研通互助平台的介绍 1481741