Screening for Depression Using Natural Language Processing: Literature Review

可解释性 人工智能 计算机科学 机器学习 数据科学 相关性(法律) 情绪分析 自然语言处理 政治学 法学
作者
Bazen Gashaw Teferra,Alice Rueda,Hilary Pang,Richard Valenzano,Reza Samavi,Sridhar Krishnan,Venkat Bhat
出处
期刊:Interactive journal of medical research [JMIR Publications Inc.]
卷期号:13: e55067-e55067
标识
DOI:10.2196/55067
摘要

Background Depression is a prevalent global mental health disorder with substantial individual and societal impact. Natural language processing (NLP), a branch of artificial intelligence, offers the potential for improving depression screening by extracting meaningful information from textual data, but there are challenges and ethical considerations. Objective This literature review aims to explore existing NLP methods for detecting depression, discuss successes and limitations, address ethical concerns, and highlight potential biases. Methods A literature search was conducted using Semantic Scholar, PubMed, and Google Scholar to identify studies on depression screening using NLP. Keywords included “depression screening,” “depression detection,” and “natural language processing.” Studies were included if they discussed the application of NLP techniques for depression screening or detection. Studies were screened and selected for relevance, with data extracted and synthesized to identify common themes and gaps in the literature. Results NLP techniques, including sentiment analysis, linguistic markers, and deep learning models, offer practical tools for depression screening. Supervised and unsupervised machine learning models and large language models like transformers have demonstrated high accuracy in a variety of application domains. However, ethical concerns related to privacy, bias, interpretability, and lack of regulations to protect individuals arise. Furthermore, cultural and multilingual perspectives highlight the need for culturally sensitive models. Conclusions NLP presents opportunities to enhance depression detection, but considerable challenges persist. Ethical concerns must be addressed, governance guidance is needed to mitigate risks, and cross-cultural perspectives must be integrated. Future directions include improving interpretability, personalization, and increased collaboration with domain experts, such as data scientists and machine learning engineers. NLP’s potential to enhance mental health care remains promising, depending on overcoming obstacles and continuing innovation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
娜娜子欧完成签到,获得积分10
刚刚
皛皛完成签到 ,获得积分10
刚刚
青鱼完成签到,获得积分10
刚刚
1秒前
fiammazeng应助a初心不变采纳,获得10
1秒前
xiaxianong发布了新的文献求助10
1秒前
1秒前
murpuy完成签到,获得积分10
2秒前
2秒前
2秒前
4秒前
鲤鱼鸽子应助FG采纳,获得10
4秒前
QDU应助liuguohua126采纳,获得10
4秒前
4秒前
洛必达完成签到,获得积分10
5秒前
SciGPT应助十三采纳,获得10
5秒前
YXY发布了新的文献求助10
5秒前
书白完成签到,获得积分10
6秒前
6秒前
Jasper应助忧伤的慕梅采纳,获得10
6秒前
祖国小红花完成签到,获得积分20
6秒前
最卷的卷心菜完成签到,获得积分10
6秒前
魅力蜗牛完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
Ava应助陌路孤星采纳,获得10
8秒前
可爱可兰完成签到,获得积分10
8秒前
xiaxianong完成签到,获得积分10
9秒前
幸福糖豆完成签到,获得积分20
9秒前
9秒前
9秒前
9秒前
a初心不变完成签到,获得积分10
9秒前
10秒前
乐乐应助重要棉花糖采纳,获得10
10秒前
东东完成签到 ,获得积分10
10秒前
吉如天完成签到,获得积分10
11秒前
11秒前
11秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299089
求助须知:如何正确求助?哪些是违规求助? 2934118
关于积分的说明 8467235
捐赠科研通 2607521
什么是DOI,文献DOI怎么找? 1423776
科研通“疑难数据库(出版商)”最低求助积分说明 661689
邀请新用户注册赠送积分活动 645336