A nonlocal prior in iterative CT reconstruction

迭代重建 先验概率 反问题 计算机科学 正规化(语言学) 杠杆(统计) 断层摄影术 算法 人工智能 像素 分段 数学优化 计算机视觉 数学 贝叶斯概率 数学分析 光学 物理
作者
Ziyu Shu,Alireza Entezari
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17533
摘要

Abstract Background Computed tomography (CT) reconstruction problems are always framed as inverse problems, where the attenuation map of an imaged object is reconstructed from the sinogram measurement. In practice, these inverse problems are often ill‐posed, especially under few‐view and limited‐angle conditions, which makes accurate reconstruction challenging. Existing solutions use regularizations such as total variation to steer reconstruction algorithms to the most plausible result. However, most prevalent regularizations rely on the same priors, such as piecewise constant prior, hindering their ability to collaborate effectively and further boost reconstruction precision. Purpose This study aims to overcome the aforementioned challenge a prior previously limited to discrete tomography. This enables more accurate reconstructions when the proposed method is used in conjunction with most existing regularizations as they utilize different priors. The improvements will be demonstrated through experiments conducted under various conditions. Methods Inspired by the discrete algebraic reconstruction technique (DART) algorithm for discrete tomography, we find out that pixel grayscale values in CT images are not uniformly distributed and are actually highly clustered. Such discovery can be utilized as a powerful prior for CT reconstruction. In this paper, we leverage the collaborative filtering technique to enable the collaboration of the proposed prior and most existing regularizations, significantly enhancing the reconstruction accuracy. Results Our experiments show that the proposed method can work with most existing regularizations and significantly improve the reconstruction quality. Such improvement is most pronounced under limited‐angle and few‐view conditions. Furthermore, the proposed regularization also has the potential for further improvement and can be utilized in other image reconstruction areas. Conclusions We propose improving the performance of iterative CT reconstruction algorithms by applying the collaborative filtering technique along with a prior based on the densely clustered distribution of pixel grayscale values in CT images. Our experimental results indicate that the proposed methodology consistently enhances reconstruction accuracy when used in conjunction with most existing regularizations, particularly under few‐view and limited‐angle conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
个性乐荷应助科研通管家采纳,获得10
2秒前
JamesPei应助科研通管家采纳,获得10
3秒前
bkagyin应助科研通管家采纳,获得10
3秒前
小二郎应助科研通管家采纳,获得10
3秒前
个性乐荷应助科研通管家采纳,获得10
3秒前
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
AM发布了新的文献求助10
8秒前
稳住完成签到,获得积分10
9秒前
charming应助彼得大帝采纳,获得10
10秒前
12秒前
陈昇完成签到 ,获得积分10
13秒前
文艺水风完成签到 ,获得积分10
14秒前
15秒前
瑾玉完成签到,获得积分10
18秒前
谢小盟完成签到 ,获得积分10
19秒前
HY完成签到,获得积分10
21秒前
无敌大洲洲完成签到,获得积分10
21秒前
fxx2021完成签到,获得积分10
23秒前
深情安青应助海绵宝宝采纳,获得10
24秒前
郑洋完成签到 ,获得积分10
26秒前
Docgyj完成签到 ,获得积分10
28秒前
Xianhe完成签到,获得积分10
32秒前
FrancisCho完成签到,获得积分10
32秒前
王灿灿完成签到,获得积分10
32秒前
Dr彭0923完成签到,获得积分10
40秒前
42秒前
我是你悟空哥哥完成签到 ,获得积分10
45秒前
刻苦的小土豆完成签到 ,获得积分10
45秒前
李健应助海绵宝宝采纳,获得10
46秒前
深爱不疑完成签到 ,获得积分10
54秒前
彪壮的狗完成签到 ,获得积分10
55秒前
Littlerain~完成签到,获得积分10
59秒前
完美的凝蝶完成签到 ,获得积分10
1分钟前
Sun发布了新的文献求助10
1分钟前
ssffzb2008完成签到,获得积分10
1分钟前
隐形曼青应助海绵宝宝采纳,获得10
1分钟前
King丶惠忍完成签到,获得积分10
1分钟前
爱撒娇的孤丹完成签到 ,获得积分10
1分钟前
小丸子完成签到 ,获得积分10
1分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3317058
求助须知:如何正确求助?哪些是违规求助? 2948764
关于积分的说明 8542276
捐赠科研通 2624729
什么是DOI,文献DOI怎么找? 1436415
科研通“疑难数据库(出版商)”最低求助积分说明 665893
邀请新用户注册赠送积分活动 651821