亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A nonlocal prior in iterative CT reconstruction

迭代重建 先验概率 反问题 计算机科学 正规化(语言学) 杠杆(统计) 断层摄影术 算法 人工智能 像素 分段 数学优化 计算机视觉 数学 贝叶斯概率 光学 物理 数学分析
作者
Ziyu Shu,Alireza Entezari
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17533
摘要

Abstract Background Computed tomography (CT) reconstruction problems are always framed as inverse problems, where the attenuation map of an imaged object is reconstructed from the sinogram measurement. In practice, these inverse problems are often ill‐posed, especially under few‐view and limited‐angle conditions, which makes accurate reconstruction challenging. Existing solutions use regularizations such as total variation to steer reconstruction algorithms to the most plausible result. However, most prevalent regularizations rely on the same priors, such as piecewise constant prior, hindering their ability to collaborate effectively and further boost reconstruction precision. Purpose This study aims to overcome the aforementioned challenge a prior previously limited to discrete tomography. This enables more accurate reconstructions when the proposed method is used in conjunction with most existing regularizations as they utilize different priors. The improvements will be demonstrated through experiments conducted under various conditions. Methods Inspired by the discrete algebraic reconstruction technique (DART) algorithm for discrete tomography, we find out that pixel grayscale values in CT images are not uniformly distributed and are actually highly clustered. Such discovery can be utilized as a powerful prior for CT reconstruction. In this paper, we leverage the collaborative filtering technique to enable the collaboration of the proposed prior and most existing regularizations, significantly enhancing the reconstruction accuracy. Results Our experiments show that the proposed method can work with most existing regularizations and significantly improve the reconstruction quality. Such improvement is most pronounced under limited‐angle and few‐view conditions. Furthermore, the proposed regularization also has the potential for further improvement and can be utilized in other image reconstruction areas. Conclusions We propose improving the performance of iterative CT reconstruction algorithms by applying the collaborative filtering technique along with a prior based on the densely clustered distribution of pixel grayscale values in CT images. Our experimental results indicate that the proposed methodology consistently enhances reconstruction accuracy when used in conjunction with most existing regularizations, particularly under few‐view and limited‐angle conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yang完成签到 ,获得积分10
5秒前
趁微风不躁完成签到,获得积分10
55秒前
大力不评发布了新的文献求助10
59秒前
TXZ06完成签到,获得积分10
1分钟前
1分钟前
科研通AI2S应助spark采纳,获得10
1分钟前
大力不评完成签到,获得积分20
1分钟前
星辰大海应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
2分钟前
2分钟前
haoqingyun发布了新的文献求助10
2分钟前
hanwei_mei发布了新的文献求助10
2分钟前
2分钟前
2分钟前
hanwei_mei完成签到,获得积分10
3分钟前
haoqingyun发布了新的文献求助10
3分钟前
CodeCraft应助腼腆的月亮采纳,获得10
3分钟前
田様应助科研通管家采纳,获得10
3分钟前
3分钟前
浮游应助wuran采纳,获得10
3分钟前
haoqingyun完成签到,获得积分10
3分钟前
搔扒完成签到,获得积分10
4分钟前
大熊完成签到 ,获得积分10
4分钟前
sy完成签到 ,获得积分10
4分钟前
情怀应助安详的面包采纳,获得10
4分钟前
qqq完成签到,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
ceeray23应助科研通管家采纳,获得10
5分钟前
远方完成签到,获得积分10
5分钟前
浮游应助wuran采纳,获得10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
6分钟前
7分钟前
佳佳发布了新的文献求助10
7分钟前
ceeray23应助科研通管家采纳,获得10
7分钟前
Criminology34应助科研通管家采纳,获得10
7分钟前
ceeray23应助科研通管家采纳,获得10
7分钟前
Criminology34应助科研通管家采纳,获得10
7分钟前
ceeray23应助科研通管家采纳,获得10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650990
求助须知:如何正确求助?哪些是违规求助? 4782616
关于积分的说明 15052919
捐赠科研通 4809775
什么是DOI,文献DOI怎么找? 2572590
邀请新用户注册赠送积分活动 1528583
关于科研通互助平台的介绍 1487585