A nonlocal prior in iterative CT reconstruction

迭代重建 先验概率 反问题 计算机科学 正规化(语言学) 杠杆(统计) 断层摄影术 算法 人工智能 像素 分段 数学优化 计算机视觉 数学 贝叶斯概率 数学分析 光学 物理
作者
Ziyu Shu,Alireza Entezari
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17533
摘要

Abstract Background Computed tomography (CT) reconstruction problems are always framed as inverse problems, where the attenuation map of an imaged object is reconstructed from the sinogram measurement. In practice, these inverse problems are often ill‐posed, especially under few‐view and limited‐angle conditions, which makes accurate reconstruction challenging. Existing solutions use regularizations such as total variation to steer reconstruction algorithms to the most plausible result. However, most prevalent regularizations rely on the same priors, such as piecewise constant prior, hindering their ability to collaborate effectively and further boost reconstruction precision. Purpose This study aims to overcome the aforementioned challenge a prior previously limited to discrete tomography. This enables more accurate reconstructions when the proposed method is used in conjunction with most existing regularizations as they utilize different priors. The improvements will be demonstrated through experiments conducted under various conditions. Methods Inspired by the discrete algebraic reconstruction technique (DART) algorithm for discrete tomography, we find out that pixel grayscale values in CT images are not uniformly distributed and are actually highly clustered. Such discovery can be utilized as a powerful prior for CT reconstruction. In this paper, we leverage the collaborative filtering technique to enable the collaboration of the proposed prior and most existing regularizations, significantly enhancing the reconstruction accuracy. Results Our experiments show that the proposed method can work with most existing regularizations and significantly improve the reconstruction quality. Such improvement is most pronounced under limited‐angle and few‐view conditions. Furthermore, the proposed regularization also has the potential for further improvement and can be utilized in other image reconstruction areas. Conclusions We propose improving the performance of iterative CT reconstruction algorithms by applying the collaborative filtering technique along with a prior based on the densely clustered distribution of pixel grayscale values in CT images. Our experimental results indicate that the proposed methodology consistently enhances reconstruction accuracy when used in conjunction with most existing regularizations, particularly under few‐view and limited‐angle conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
流北爷发布了新的文献求助10
1秒前
开心完成签到,获得积分10
1秒前
gguc发布了新的文献求助10
2秒前
万能图书馆应助okghy采纳,获得10
2秒前
2秒前
怕黑道消完成签到 ,获得积分10
2秒前
王小布完成签到,获得积分10
3秒前
石头发布了新的文献求助10
3秒前
楼下小白龙完成签到,获得积分10
3秒前
润润轩轩发布了新的文献求助10
3秒前
3秒前
Echo完成签到,获得积分10
4秒前
zmmmm发布了新的文献求助10
5秒前
雪山飞龙发布了新的文献求助30
5秒前
5秒前
Jenny应助小土豆采纳,获得50
5秒前
情怀应助布鲁鲁采纳,获得10
5秒前
5秒前
悦耳寒松发布了新的文献求助10
6秒前
6秒前
霍嘉文完成签到,获得积分10
6秒前
7秒前
bluesiryao发布了新的文献求助10
7秒前
李爱国应助23采纳,获得10
8秒前
8秒前
SHJ发布了新的文献求助10
8秒前
开心的幻柏完成签到 ,获得积分10
8秒前
大神完成签到 ,获得积分20
8秒前
8秒前
9秒前
9秒前
闪闪的YOSH完成签到,获得积分10
9秒前
Jimmy完成签到,获得积分10
9秒前
仁爱书白完成签到,获得积分10
10秒前
10秒前
孤独的珩发布了新的文献求助10
11秒前
孙悦完成签到,获得积分10
12秒前
lu完成签到,获得积分10
12秒前
Rachel发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794