A nonlocal prior in iterative CT reconstruction

迭代重建 先验概率 反问题 计算机科学 正规化(语言学) 杠杆(统计) 断层摄影术 算法 人工智能 像素 分段 数学优化 计算机视觉 数学 贝叶斯概率 光学 物理 数学分析
作者
Ziyu Shu,Alireza Entezari
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17533
摘要

Abstract Background Computed tomography (CT) reconstruction problems are always framed as inverse problems, where the attenuation map of an imaged object is reconstructed from the sinogram measurement. In practice, these inverse problems are often ill‐posed, especially under few‐view and limited‐angle conditions, which makes accurate reconstruction challenging. Existing solutions use regularizations such as total variation to steer reconstruction algorithms to the most plausible result. However, most prevalent regularizations rely on the same priors, such as piecewise constant prior, hindering their ability to collaborate effectively and further boost reconstruction precision. Purpose This study aims to overcome the aforementioned challenge a prior previously limited to discrete tomography. This enables more accurate reconstructions when the proposed method is used in conjunction with most existing regularizations as they utilize different priors. The improvements will be demonstrated through experiments conducted under various conditions. Methods Inspired by the discrete algebraic reconstruction technique (DART) algorithm for discrete tomography, we find out that pixel grayscale values in CT images are not uniformly distributed and are actually highly clustered. Such discovery can be utilized as a powerful prior for CT reconstruction. In this paper, we leverage the collaborative filtering technique to enable the collaboration of the proposed prior and most existing regularizations, significantly enhancing the reconstruction accuracy. Results Our experiments show that the proposed method can work with most existing regularizations and significantly improve the reconstruction quality. Such improvement is most pronounced under limited‐angle and few‐view conditions. Furthermore, the proposed regularization also has the potential for further improvement and can be utilized in other image reconstruction areas. Conclusions We propose improving the performance of iterative CT reconstruction algorithms by applying the collaborative filtering technique along with a prior based on the densely clustered distribution of pixel grayscale values in CT images. Our experimental results indicate that the proposed methodology consistently enhances reconstruction accuracy when used in conjunction with most existing regularizations, particularly under few‐view and limited‐angle conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
STOOd完成签到 ,获得积分10
刚刚
淡然水绿发布了新的文献求助10
1秒前
长安发布了新的文献求助30
1秒前
可乐加冰完成签到,获得积分20
1秒前
一只小羊完成签到,获得积分10
1秒前
Dream发布了新的文献求助10
2秒前
领导范儿应助从笙采纳,获得10
2秒前
斯文败类应助7890733采纳,获得10
2秒前
生信精准科研完成签到,获得积分10
3秒前
HYYY发布了新的文献求助10
3秒前
郭囯完成签到,获得积分10
3秒前
lilili完成签到 ,获得积分10
3秒前
4秒前
4秒前
4秒前
4秒前
5秒前
快乐科研完成签到,获得积分10
6秒前
6秒前
xcgh应助yy采纳,获得10
7秒前
7秒前
7秒前
7秒前
Emily完成签到,获得积分10
8秒前
小碗君完成签到,获得积分10
8秒前
长安完成签到,获得积分10
8秒前
汉堡包应助老实的乐儿采纳,获得10
8秒前
8秒前
Wayne完成签到,获得积分10
9秒前
可能完成签到,获得积分10
10秒前
顺利毕业耶耶耶完成签到,获得积分10
10秒前
薛琴完成签到 ,获得积分10
10秒前
10秒前
wuxunxun2015发布了新的文献求助10
10秒前
文章发发发完成签到 ,获得积分10
10秒前
FashionBoy应助秀丽的短靴采纳,获得10
10秒前
hu发布了新的文献求助10
11秒前
赵赵完成签到,获得积分10
11秒前
无花果应助喜欢汪的猫采纳,获得10
12秒前
12秒前
高分求助中
Incubation and Hatchery Performance, The Devil is in the Details 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5204858
求助须知:如何正确求助?哪些是违规求助? 4383758
关于积分的说明 13650861
捐赠科研通 4241754
什么是DOI,文献DOI怎么找? 2327024
邀请新用户注册赠送积分活动 1324769
关于科研通互助平台的介绍 1276983