亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A nonlocal prior in iterative CT reconstruction

迭代重建 先验概率 反问题 计算机科学 正规化(语言学) 杠杆(统计) 断层摄影术 算法 人工智能 像素 分段 数学优化 计算机视觉 数学 贝叶斯概率 光学 物理 数学分析
作者
Ziyu Shu,Alireza Entezari
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17533
摘要

Abstract Background Computed tomography (CT) reconstruction problems are always framed as inverse problems, where the attenuation map of an imaged object is reconstructed from the sinogram measurement. In practice, these inverse problems are often ill‐posed, especially under few‐view and limited‐angle conditions, which makes accurate reconstruction challenging. Existing solutions use regularizations such as total variation to steer reconstruction algorithms to the most plausible result. However, most prevalent regularizations rely on the same priors, such as piecewise constant prior, hindering their ability to collaborate effectively and further boost reconstruction precision. Purpose This study aims to overcome the aforementioned challenge a prior previously limited to discrete tomography. This enables more accurate reconstructions when the proposed method is used in conjunction with most existing regularizations as they utilize different priors. The improvements will be demonstrated through experiments conducted under various conditions. Methods Inspired by the discrete algebraic reconstruction technique (DART) algorithm for discrete tomography, we find out that pixel grayscale values in CT images are not uniformly distributed and are actually highly clustered. Such discovery can be utilized as a powerful prior for CT reconstruction. In this paper, we leverage the collaborative filtering technique to enable the collaboration of the proposed prior and most existing regularizations, significantly enhancing the reconstruction accuracy. Results Our experiments show that the proposed method can work with most existing regularizations and significantly improve the reconstruction quality. Such improvement is most pronounced under limited‐angle and few‐view conditions. Furthermore, the proposed regularization also has the potential for further improvement and can be utilized in other image reconstruction areas. Conclusions We propose improving the performance of iterative CT reconstruction algorithms by applying the collaborative filtering technique along with a prior based on the densely clustered distribution of pixel grayscale values in CT images. Our experimental results indicate that the proposed methodology consistently enhances reconstruction accuracy when used in conjunction with most existing regularizations, particularly under few‐view and limited‐angle conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
57秒前
aa111发布了新的文献求助10
1分钟前
完美世界应助aa111采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
maher应助科研通管家采纳,获得30
1分钟前
ZYP应助科研通管家采纳,获得10
1分钟前
1分钟前
科研启动发布了新的文献求助30
1分钟前
1分钟前
酷波er应助yahaahaaoo采纳,获得10
1分钟前
科研启动完成签到,获得积分10
1分钟前
科研通AI6应助xxx采纳,获得10
2分钟前
自信号厂完成签到 ,获得积分0
2分钟前
领导范儿应助nikuisi采纳,获得10
2分钟前
2分钟前
wew发布了新的文献求助10
2分钟前
2分钟前
朴素的山蝶完成签到 ,获得积分10
2分钟前
wangfaqing942完成签到 ,获得积分10
2分钟前
陌路人发布了新的文献求助10
2分钟前
ele_yuki完成签到,获得积分10
3分钟前
3分钟前
nikuisi发布了新的文献求助10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
mm应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
wew完成签到,获得积分20
3分钟前
3分钟前
yahaahaaoo发布了新的文献求助10
3分钟前
yahaahaaoo完成签到,获得积分10
3分钟前
山与完成签到,获得积分20
3分钟前
CATH完成签到 ,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Elements of Evolutionary Genetics 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5463313
求助须知:如何正确求助?哪些是违规求助? 4568049
关于积分的说明 14312357
捐赠科研通 4493975
什么是DOI,文献DOI怎么找? 2462050
邀请新用户注册赠送积分活动 1450987
关于科研通互助平台的介绍 1426221