Residual CNN-Based Transceiver with Attention-Aided GAN for Unknown Channels

收发机 计算机科学 残余物 计算机网络 电信 无线 算法
作者
Huimei Han,Shanshan Wang,Weidang Lu,Shilian Zheng,Xiaoniu Yang
出处
期刊:IEEE Transactions on Cognitive Communications and Networking [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tccn.2025.3527689
摘要

Intelligent transceivers and wireless channels form an autoencoder (AE) structure, demonstrating a significant improvement in communication performance through end-to-end (E2E) learning. Recently, when the wireless channel is unknown, a residual generative adversarial network (GAN) has been utilized to simulate the real channels, thus facilitating the transmitter training. The quality of these simulated channels directly affects the adaptability of the intelligent transceiver to real-world situations. However, the training instability and the use of fully connected layers limit the residual GAN's ability to capture effective features of real channels. To address these limitations, we propose an attention-aided residual GAN (AAR-GAN) model. This approach utilizes a convolutional neural network (CNN) to construct the GAN model and applies a squeeze-and-excitation channel attention block to CNN to automatically determine the significance of the feature channel. Furthermore, we employ a residual CNN (RCNN) to construct the transceiver, enabling smoother and more consistent learning, thus improving the communication performance. Simulation results demonstrate that our RCNN-based intelligent transceiver with the AAR-GAN model as an unknown channel significantly improves the bit error rate and block error rate for various bit lengths in the AWGN, Rayleigh fading and real DeepMIMO channels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lalalala发布了新的文献求助10
刚刚
1秒前
顾矜应助旺旺碎冰冰采纳,获得10
3秒前
小二郎应助暴富采纳,获得10
3秒前
一夜暴富完成签到 ,获得积分10
3秒前
4秒前
阿难完成签到,获得积分10
4秒前
4秒前
4秒前
zxx发布了新的文献求助10
5秒前
忧郁绿柏发布了新的文献求助10
5秒前
艺成成发布了新的文献求助10
5秒前
领导范儿应助Ann采纳,获得10
6秒前
Misty_完成签到,获得积分10
6秒前
6秒前
外向的导师完成签到,获得积分20
7秒前
英姑应助echo采纳,获得10
7秒前
7秒前
羞涩的晓丝完成签到,获得积分10
8秒前
失眠的汽车完成签到,获得积分10
8秒前
8秒前
搜集达人应助科研通管家采纳,获得10
8秒前
开放筝完成签到,获得积分10
8秒前
天天快乐应助科研通管家采纳,获得10
8秒前
8秒前
赘婿应助科研通管家采纳,获得10
9秒前
九川应助科研通管家采纳,获得10
9秒前
小二郎应助科研通管家采纳,获得10
9秒前
顾矜应助科研通管家采纳,获得10
9秒前
毛毛大王完成签到,获得积分10
9秒前
9秒前
研友_VZG7GZ应助科研通管家采纳,获得10
9秒前
大模型应助科研通管家采纳,获得10
9秒前
Owen应助科研通管家采纳,获得10
9秒前
JamesOliver应助科研通管家采纳,获得30
9秒前
迟大猫应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
NexusExplorer应助科研通管家采纳,获得10
10秒前
英俊的铭应助科研通管家采纳,获得20
10秒前
传奇3应助科研通管家采纳,获得10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3552436
求助须知:如何正确求助?哪些是违规求助? 3128534
关于积分的说明 9378502
捐赠科研通 2827678
什么是DOI,文献DOI怎么找? 1554508
邀请新用户注册赠送积分活动 725515
科研通“疑难数据库(出版商)”最低求助积分说明 714961