Recent advances of machine learning in the geographical origin traceability of food and agro‐products: A review

可追溯性 计算机科学 食品 可解释性 农业 跟踪(心理语言学) 过程(计算) 人工智能 地理 食品科学 化学 语言学 操作系统 软件工程 哲学 考古
作者
Jiali Li,Jianping Qian,Jinyong Chen,Luis Ruiz-García,Chen Dong,Qian Chen,Zihan Liu,Pengnan Xiao,Zhiyao Zhao
出处
期刊:Comprehensive Reviews in Food Science and Food Safety [Wiley]
卷期号:24 (1) 被引量:1
标识
DOI:10.1111/1541-4337.70082
摘要

Abstract The geographical origin traceability of food and agro‐products has been attracted worldwide. Especially with the rise of machine learning (ML) technology, it provides cutting‐edge solutions to erstwhile intractable issues to identify the origin of food and agro‐products. By utilizing advanced algorithms, ML can extract feature information of food and agro‐products that is closely related to origin and, more accurately, identify and trace their origins, which is of great significance to the entire food and agriculture industry. This paper provides a comprehensive overview of the state‐of‐the‐art applications of ML in the geographical origin traceability of food and agro‐products. First, commonly used ML methods are summarized. The paper then outlines the whole process of preparation for modeling, model training as well as model evaluation for building traceability models–based ML. Finally, recent applications of ML combined with different traceability techniques in the field of food and agro‐products are revisited. Although ML has made many achievements in solving the geographical origin traceability problem of food and agro‐products, it still has great development potential. For example, the application of ML is yet insufficient in the geographical origin traceability using DNA or computer vision techniques. The ability of ML to predict the geographical origin of food and agro‐products can be further improved, for example, by increasing model interpretability, incorporating data fusion strategies, and others.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天大地大发布了新的文献求助10
1秒前
2秒前
2秒前
13508104971发布了新的文献求助10
2秒前
3秒前
张佳明完成签到,获得积分10
3秒前
chan完成签到,获得积分20
4秒前
sun2发布了新的文献求助10
5秒前
5秒前
5秒前
CodeCraft应助qwe采纳,获得10
6秒前
搞什么搞发布了新的文献求助100
6秒前
8秒前
8秒前
8秒前
8秒前
JamesPei应助天大地大采纳,获得10
10秒前
何大青发布了新的文献求助10
10秒前
neko发布了新的文献求助10
11秒前
Jasper应助笑面客采纳,获得10
11秒前
劲秉应助chan采纳,获得10
11秒前
踏雪飞鸿发布了新的文献求助10
11秒前
科研通AI5应助megumiiii采纳,获得10
12秒前
周助发布了新的文献求助10
12秒前
LIZHI完成签到,获得积分10
14秒前
朱瑶君完成签到,获得积分10
14秒前
CipherSage应助坚强的严青采纳,获得10
15秒前
qiuyu发布了新的文献求助10
15秒前
小九完成签到,获得积分10
15秒前
nbnbaaa发布了新的文献求助10
15秒前
SYLH应助小皮采纳,获得30
17秒前
17秒前
苽峰完成签到,获得积分10
17秒前
hetao完成签到,获得积分10
18秒前
舟舟完成签到,获得积分10
18秒前
19秒前
赘婿应助xx采纳,获得10
19秒前
pluto应助一起听听风啊采纳,获得10
19秒前
20秒前
21秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Maneuvering of a Damaged Navy Combatant 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3769759
求助须知:如何正确求助?哪些是违规求助? 3314765
关于积分的说明 10173793
捐赠科研通 3030106
什么是DOI,文献DOI怎么找? 1662612
邀请新用户注册赠送积分活动 795054
科研通“疑难数据库(出版商)”最低求助积分说明 756519