FCB-YOLOv8s-Seg: A Malignant Weed Instance Segmentation Model for Targeted Spraying in Soybean Fields

分割 计算机科学 杂草 人工智能 特征(语言学) 棱锥(几何) 模式识别(心理学) 农学 数学 生物 语言学 哲学 几何学
作者
Zishang Yang,Lele Wang,Chenxu Li,He Li
出处
期刊:Agriculture [MDPI AG]
卷期号:14 (12): 2357-2357
标识
DOI:10.3390/agriculture14122357
摘要

Effective management of malignant weeds is critical to soybean growth. This study focuses on addressing the critical challenges of targeted spraying operations for malignant weeds such as Cirsium setosum, which severely threaten soybean yield in soybean fields. Specifically, this research aims to tackle key issues in plant protection operations, including the precise identification of weeds, the lightweight deployment of segmentation models, real-time requirements for spraying operations, and the generalization ability of models in diverse field environments. To address these challenges, this study proposes an improved weed instance segmentation model based on YOLOv8s-Seg, named FCB-YOLOv8s-Seg, for targeted spraying operations in soybean fields. The FCB-YOLOv8s-Seg model incorporates a lightweight backbone network to accelerate computations and reduce model size, with optimized Squeeze-and-Excitation Networks (SENet) and Bidirectional Feature Pyramid Network (BiFPN) modules integrated into the neck network to enhance weed recognition accuracy. Data collected from real soybean field scenes were used for model training and testing. The results of ablation experiments revealed that the FCB-YOLOv8s-Seg model achieved a mean average precision of 95.18% for bounding box prediction and 96.63% for segmentation, marking an increase of 5.08% and 7.43% over the original YOLOv8s-Seg model. While maintaining a balanced model scale, the object detection and segmentation accuracy of this model surpass other existing classic models such as YOLOv5s-Seg, Mask-RCNN, and YOLACT. The detection results in different scenes show that the FCB-YOLOv8s-Seg model performs well in fine-grained feature segmentation in complex scenes. Compared with several existing classical models, the FCB-YOLOv8s-Seg model demonstrates better performance. Additionally, field tests on plots with varying weed densities and operational speeds indicated an average segmentation rate of 91.30%, which is 6.38% higher than the original model. The proposed algorithm shows higher accuracy and performance in practical field instance segmentation tasks and is expected to provide strong technical support for promoting targeted spray operations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
年轻的钥匙完成签到 ,获得积分20
刚刚
领导范儿应助huanhuan采纳,获得10
1秒前
1秒前
1秒前
乐乐应助穆小菜采纳,获得10
1秒前
六六发布了新的文献求助10
1秒前
科研通AI5应助yvxi采纳,获得10
2秒前
白方明发布了新的文献求助10
2秒前
3秒前
科目三应助海绵徐采纳,获得10
3秒前
meikoo发布了新的文献求助10
3秒前
3秒前
愉快紫萍完成签到,获得积分10
3秒前
3秒前
shengChen发布了新的文献求助10
4秒前
4秒前
4秒前
科研通AI5应助小新撒浪嘿采纳,获得10
4秒前
万能图书馆应助复杂含灵采纳,获得10
5秒前
Tu发布了新的文献求助20
5秒前
5秒前
方法发布了新的文献求助10
5秒前
撒西不理完成签到,获得积分10
5秒前
蓝白啦发布了新的文献求助30
6秒前
岁晚完成签到,获得积分10
6秒前
6秒前
Lyncus发布了新的文献求助10
7秒前
彭于晏应助7777777采纳,获得10
7秒前
7秒前
Gu发布了新的文献求助10
8秒前
yjia发布了新的文献求助10
8秒前
zhaoming完成签到 ,获得积分10
8秒前
8秒前
lllllll发布了新的文献求助10
9秒前
六六完成签到,获得积分10
9秒前
9秒前
10秒前
FashionBoy应助无奈满天采纳,获得10
10秒前
zm发布了新的文献求助10
11秒前
Yolo完成签到,获得积分10
11秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3476549
求助须知:如何正确求助?哪些是违规求助? 3068193
关于积分的说明 9106870
捐赠科研通 2759699
什么是DOI,文献DOI怎么找? 1514226
邀请新用户注册赠送积分活动 700111
科研通“疑难数据库(出版商)”最低求助积分说明 699301