MLMSeg: A multi-view learning model for ultrasound thyroid nodule segmentation

分割 计算机科学 甲状腺结节 人工智能 模式识别(心理学) 卷积神经网络 深度学习 图形 特征(语言学) 甲状腺 医学 语言学 理论计算机科学 内科学 哲学
作者
Guanyuan Chen,Guanghua Tan,Mingxing Duan,Bin Pu,Hongxia Luo,Shengli Li,Kenli Li
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:169: 107898-107898 被引量:14
标识
DOI:10.1016/j.compbiomed.2023.107898
摘要

Accurate segmentation of the thyroid gland in ultrasound images is an essential initial step in distinguishing between benign and malignant nodules, thus facilitating early diagnosis. Most existing deep learning-based methods to segment thyroid nodules are learned from only a single view or two views, which limits the performance of segmenting nodules at different scales in complex ultrasound scanning environments. To address this limitation, this study proposes a multi-view learning model, abbreviated as MLMSeg. First, a deep convolutional neural network is introduced to encode the features of the local view. Second, a multi-channel transformer module is designed to capture long-range dependency correlations of global view between different nodules. Third, there are semantic relationships of structural view between features of different layers. For example, low-level features and high-level features are endowed with hidden relationships in the feature space. To this end, a cross-layer graph convolutional module is proposed to adaptively learn the correlations of high-level and low-level features by constructing graphs across different layers. In addition, in the view fusion, a channel-aware graph attention block is devised to fuse the features from the aforementioned views for accurate segmentation of thyroid nodules. To demonstrate the effectiveness of the proposed method, extensive comparative experiments were conducted with 14 baseline methods. MLMSeg achieved higher Dice coefficients (92.10% and 83.84%) and Intersection over Union scores (86.60% and 73.52%) on two different thyroid datasets. The exceptional segmentation capability of MLMSeg for thyroid nodules can greatly assist in localizing thyroid nodules and facilitating more precise measurements of their transverse and longitudinal diameters, which is of significant clinical relevance for the diagnosis of thyroid nodules.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liuzhixiao发布了新的文献求助10
刚刚
CLMY完成签到,获得积分10
1秒前
2秒前
YM完成签到,获得积分10
2秒前
2秒前
烟花应助冷酷的雁菡采纳,获得10
2秒前
ymj发布了新的文献求助20
3秒前
3秒前
一个小柑橘完成签到,获得积分10
3秒前
3秒前
bkagyin应助现代初珍采纳,获得10
3秒前
希望天下0贩的0应助疏桐采纳,获得10
4秒前
我叫鲁鲁修完成签到,获得积分10
4秒前
知止发布了新的文献求助10
4秒前
4秒前
碧蓝丹烟完成签到 ,获得积分10
4秒前
笑点低的云朵完成签到,获得积分20
5秒前
5秒前
6秒前
小殷发布了新的文献求助10
6秒前
流云完成签到,获得积分10
7秒前
小蘑菇应助金宝采纳,获得10
8秒前
8秒前
完美世界应助Mr.egg采纳,获得10
8秒前
杳鸢应助赵大宝采纳,获得30
8秒前
兴奋电脑完成签到,获得积分10
8秒前
mm发布了新的文献求助10
8秒前
8秒前
差生文具多完成签到 ,获得积分10
9秒前
SciGPT应助小殷采纳,获得10
10秒前
刘蛋发布了新的文献求助10
10秒前
毛毛猫完成签到 ,获得积分10
10秒前
小小完成签到 ,获得积分10
10秒前
11秒前
11秒前
11秒前
uuu完成签到,获得积分20
11秒前
大海123发布了新的文献求助10
11秒前
12秒前
12秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 900
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
錢鍾書楊絳親友書札 600
金属中的晶界偏聚 450
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3296818
求助须知:如何正确求助?哪些是违规求助? 2932518
关于积分的说明 8457314
捐赠科研通 2605021
什么是DOI,文献DOI怎么找? 1422147
科研通“疑难数据库(出版商)”最低求助积分说明 661308
邀请新用户注册赠送积分活动 644397