材料科学
粘弹性
电解质
电池(电)
复合材料
容量损失
模数
断裂力学
电极
功率(物理)
量子力学
物理
物理化学
化学
作者
Mengjie Si,Xianfeng Jian,Yu Xie,Jiahui Zhou,Wei Jian,Ji Lin,Yufeng Luo,Jiayu Hu,Yan Jie Wang,Dong Zhang,Tiefeng Wang,Yujing Liu,Zi Liang Wu,Si Yu Zheng,Jintao Yang
标识
DOI:10.1002/aenm.202303991
摘要
Abstract Binder plays an important role in maintaining the integrity of sulfur electrode in lithium‐sulfur (Li‐S) battery. However, cracks are easily generated inside the electrode and compromise its performance due to the volume change of sulfur during redox reaction and continuous vibration originated from the external environments. It is a challenge yet crucial to develop tough binders with crack‐insensitivity and damping performance. Herein, a polymeric binder is designed with special viscoelastic behavior by tailoring its electrolyte‐philic and electrolyte‐phobic domains. The loss modulus of the binder is regulated to be highly close to its storage modulus within a wide range of frequency, generating an ultra‐high loss factor and equilibrium of viscosity‐elasticity. Based on such rheological behavior, the binder holds 1) high damping ability across a wide frequency to suppress crack generation, 2) high toughness with crack blunting behavior to resist crack propagation, 3) efficient healing capability to repair the cracks. Besides, the pendant zwitterionic groups can immobilize the lithium polysulfides and promote ion transfer. Benefiting from these advantages, the obtained Li‐S battery delivers high specific capacity with considerable capacity retention after long‐term cycling. The viscoelastic design and crack management strategy illustrated here would provide new insights into the binder design.
科研通智能强力驱动
Strongly Powered by AbleSci AI