Strain-Insensitive Outdoor Wearable Electronics by Thermally Robust Nanofibrous Radiative Cooler

数码产品 可穿戴计算机 可穿戴技术 材料科学 柔性电子器件 可伸缩电子设备 聚二甲基硅氧烷 导电体 纳米技术 光电子学 计算机科学 电气工程 复合材料 工程类 嵌入式系统
作者
Yeongju Jung,Minwoo Kim,Seong‐Min Jeong,Sangwoo Hong,Seung Hwan Ko
出处
期刊:ACS Nano [American Chemical Society]
卷期号:18 (3): 2312-2324 被引量:15
标识
DOI:10.1021/acsnano.3c10241
摘要

Stable outdoor wearable electronics are gaining attention due to challenges in sustaining consistent device performance outdoors, where sunlight exposure and user movement can disrupt operations. Currently, researchers have focused on integrating radiative coolers into wearable devices for outdoor thermal management. However, these approaches often rely on heat-vulnerable thermoplastic polymers for radiative coolers and strain-susceptible conductors that are unsuitable for wearable electronics. Here, we introduce mechanically, electrically, and thermally stable wearable electronics even when they are stretched under sunlight to address these challenges. This achievement is realized by integrating a polydimethylsiloxane nanofibrous cooler and liquid metal conductors for a fully stable wearable device. The thermally robust architecture of nanofibers, based on their inherent properties as thermoset polymers, exhibits excellent cooling performance through high solar reflection and thermal emission. Additionally, laser-patterned conductors possess ideal properties for wearable electronics, including strain-insensitivity, nonsmearing behavior, and negligible contact resistance. As proof, we developed wearable electronics integrated with thermally and electromechanically stable components that accurately detect physiological signals in harsh environments, including light exposure, while stretched up to 30%. This work highlights the potential for the development of everyday wearable electronics capable of reliable operation under challenging external conditions, including user-activity-induced stress and sunlight exposure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赖丰丰完成签到,获得积分10
1秒前
小蘑菇应助Gulu_采纳,获得10
2秒前
wangtinglk完成签到,获得积分20
2秒前
wsqg123发布了新的文献求助10
2秒前
爱学习的瑞瑞子完成签到 ,获得积分10
3秒前
Salut完成签到,获得积分10
3秒前
4秒前
哈密哈密完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
不再褪色发布了新的文献求助10
7秒前
7秒前
酷酷安珊完成签到,获得积分10
7秒前
猫の傲娇完成签到,获得积分10
8秒前
dxc完成签到 ,获得积分10
9秒前
yukinade发布了新的文献求助10
10秒前
SUN发布了新的文献求助10
10秒前
11秒前
猫の傲娇发布了新的文献求助10
11秒前
陈泽宇发布了新的文献求助10
11秒前
彭于晏应助Isabelxin_采纳,获得10
12秒前
华仔应助kaizt采纳,获得10
14秒前
wang5945发布了新的文献求助10
15秒前
16秒前
Gulu_发布了新的文献求助10
18秒前
wangtinglk发布了新的文献求助10
18秒前
20秒前
共享精神应助moming采纳,获得10
20秒前
兴奋的定帮完成签到 ,获得积分10
21秒前
21秒前
猫の傲娇发布了新的文献求助10
21秒前
Ava应助TaoJ采纳,获得10
24秒前
24秒前
黑雁头子完成签到 ,获得积分10
25秒前
So完成签到 ,获得积分10
26秒前
小付发布了新的文献求助10
26秒前
Archy完成签到,获得积分10
27秒前
29秒前
550关闭了550文献求助
29秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Production Logging: Theoretical and Interpretive Elements 1500
Very-high-order BVD Schemes Using β-variable THINC Method 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Mesopotamian Divination Texts: Conversing with the Gods 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3289358
求助须知:如何正确求助?哪些是违规求助? 2926377
关于积分的说明 8426871
捐赠科研通 2597551
什么是DOI,文献DOI怎么找? 1417242
科研通“疑难数据库(出版商)”最低求助积分说明 659637
邀请新用户注册赠送积分活动 642117