已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An Evaluation of Convolutional Neural Networks for Lithological Mapping Based on Hyperspectral Images

高光谱成像 卷积神经网络 计算机科学 人工智能 模式识别(心理学) 遥感 地质学 计算机视觉
作者
Ziye Wang,Renguang Zuo
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/jstars.2024.3372138
摘要

Hyperspectral remote sensing images are characterized by nanoscale spectral resolution and hundreds of continuous spectral bands, dominating significantly in geological applications ranging from lithological mapping to mineral exploration.A major challenge lies in how to incorporate spectral and spatial information, therefore promote classification performance for detecting closely resembling and mixed minerals and lithologies.Recent advances in deep learning techniques have facilitated the application of hyperspectral images in geological studies, especially experts at handling high-dimensional data with strong neighboring correlation.As a result, this study focuses on the evaluation of deep learning algorithms for lithological mapping based on hyperspectral images, and further provides guidance on mineral exploration.Four deep convolutional neural networks (CNNs), including 1D CNN, 2D CNN, 3D CNN, and a hybrid of 1D and 2D CNN, were constructed for spectral, spatial, and spatial-spectral feature extraction.The proposed frameworks were verified through case studies of lithological mapping to aid in prospecting rare metal deposits using Gaofen-5 (GF-5) hyperspectral images in the Cuonadong dome, Tibet, China.Lithological classification maps indicated that the dual-branch 1D-2D CNN yields better performance than others in both visual and quantitative comparisons, owing to the support of joint spatial-spectral feature learning.An overall classification accuracy of up to 97.4% further illustrates the feasibility of CNN models for lithological mapping based on hyperspectral images, which provides a realizable and promising approach for mineral exploration by mapping specific lithologies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助zxr采纳,获得10
4秒前
WQY完成签到,获得积分10
4秒前
afnfg发布了新的文献求助10
5秒前
5秒前
7秒前
可爱的函函应助lpc采纳,获得10
10秒前
Yy完成签到 ,获得积分10
14秒前
14秒前
17秒前
18秒前
初昀杭完成签到 ,获得积分10
19秒前
叶黄戍发布了新的文献求助10
19秒前
雨齐完成签到,获得积分10
20秒前
zxr发布了新的文献求助10
21秒前
活泼的路人完成签到 ,获得积分10
22秒前
科研66666完成签到 ,获得积分10
22秒前
xl_c完成签到 ,获得积分10
22秒前
KT完成签到,获得积分10
22秒前
宇宇完成签到 ,获得积分10
23秒前
杨幂完成签到,获得积分10
23秒前
Skywalker完成签到,获得积分10
24秒前
侠女完成签到 ,获得积分10
24秒前
xyyyy完成签到 ,获得积分10
25秒前
xxxksk发布了新的文献求助10
25秒前
今后应助叶黄戍采纳,获得10
26秒前
26秒前
27秒前
28秒前
雪白的越彬关注了科研通微信公众号
31秒前
yule完成签到 ,获得积分10
32秒前
凉小天发布了新的文献求助10
33秒前
33秒前
画船听雨眠完成签到 ,获得积分10
37秒前
鱼鱼完成签到 ,获得积分10
37秒前
大傻春发布了新的文献求助10
38秒前
39秒前
40秒前
喜欢写文章的小朱完成签到,获得积分10
41秒前
凉小天完成签到,获得积分10
42秒前
千寻完成签到,获得积分10
43秒前
高分求助中
中国国际图书贸易总公司40周年纪念文集 大事记1949-1987 2000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
草地生态学 880
Threaded Harmony: A Sustainable Approach to Fashion 799
Basic Modern Theory of Linear Complex Analytic 𝑞-Difference Equations 510
Queer Politics in Times of New Authoritarianisms: Popular Culture in South Asia 500
Livre et militantisme : La Cité éditeur 1958-1967 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3059420
求助须知:如何正确求助?哪些是违规求助? 2715380
关于积分的说明 7444859
捐赠科研通 2360909
什么是DOI,文献DOI怎么找? 1251033
科研通“疑难数据库(出版商)”最低求助积分说明 607671
版权声明 596448