A pretrain-finetune approach for improving model generalizability in outcome prediction of acute respiratory distress syndrome patients

概化理论 急性呼吸窘迫综合征 人工智能 计算机科学 重症监护 多层感知器 接收机工作特性 机器学习 随机森林 急性呼吸窘迫 逻辑回归 医学 人工神经网络 重症监护医学 内科学 统计 数学
作者
Songlu Lin,Meicheng Yang,Chengyu Liu,Zhihong Wang,Xi Long
出处
期刊:International Journal of Medical Informatics [Elsevier]
卷期号:186: 105397-105397
标识
DOI:10.1016/j.ijmedinf.2024.105397
摘要

Early prediction of acute respiratory distress syndrome (ARDS) of critically ill patients in intensive care units (ICUs) has been intensively studied in the past years. Yet a prediction model trained on data from one hospital might not be well generalized to other hospitals. It is therefore essential to develop an accurate and generalizable ARDS prediction model adaptive to different hospital or medical centers.We analyzed electronic medical records of 200,859 and 50,920 hospitalized patients within 24 h after being diagnosed with ARDS from the Philips eICU Institute (eICU-CRD) and the Medical Information Mart for Intensive Care (MIMIC-IV) dataset, respectively. Patients were sorted into three groups, including rapid death, long stay, and recovery, based on their condition or outcome between 24 and 72 h after ARDS diagnosis. To improve prediction performance and generalizability, a "pretrain-finetune" approach was applied, where we pretrained models on the eICU-CRD dataset and performed model finetuning using only a part (35%) of the MIMIC-IV dataset, and then tested the finetuned models on the remaining data from the MIMIC-IV dataset. Well-known machine-learning algorithms, including logistic regression, random forest, extreme gradient boosting, and multilayer perceptron neural networks, were employed to predict ARDS outcomes. Prediction performance was evaluated using the area under the receiver-operating characteristic curve (AUC).Results show that, in general, multilayer perceptron neural networks outperformed the other models. The use of pretrain-finetune yielded improved performance in predicting ARDS outcomes achieving a micro-AUC of 0.870 for the MIMIC-IV dataset, an improvement of 0.046 over the pretrain model.The proposed pretrain-finetune approach can effectively improve model generalizability from one to another dataset in ARDS prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高挑的牛青完成签到,获得积分20
刚刚
2秒前
3秒前
无边月色发布了新的文献求助10
3秒前
3秒前
萧寒发布了新的文献求助10
4秒前
yw发布了新的文献求助10
6秒前
Arvilzzz发布了新的文献求助30
7秒前
小虎牙完成签到,获得积分10
7秒前
7秒前
柯幼萱完成签到 ,获得积分10
7秒前
FashionBoy应助直率的高烽采纳,获得10
8秒前
泼尼松说我很甜完成签到,获得积分10
11秒前
十七完成签到,获得积分20
12秒前
科研小白发布了新的文献求助10
13秒前
13秒前
华仔应助slugger采纳,获得10
14秒前
TRY完成签到,获得积分10
16秒前
16秒前
18秒前
18秒前
斯文败类应助CQD5201314采纳,获得10
18秒前
21秒前
李爱国应助元yuan采纳,获得10
23秒前
hailey53发布了新的文献求助10
24秒前
十七发布了新的文献求助10
26秒前
lilili完成签到,获得积分20
30秒前
31秒前
杳鸢应助科研通管家采纳,获得10
31秒前
31秒前
科研通AI2S应助科研通管家采纳,获得10
31秒前
杳鸢应助科研通管家采纳,获得20
31秒前
李爱国应助科研通管家采纳,获得10
31秒前
慕青应助科研通管家采纳,获得10
31秒前
隐形曼青应助科研通管家采纳,获得10
31秒前
俊逸凌雪发布了新的文献求助10
32秒前
杰森发布了新的文献求助10
35秒前
yangyang发布了新的文献求助10
36秒前
实验大牛完成签到,获得积分10
36秒前
37秒前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 930
Field Guide to Insects of South Africa 660
The Three Stars Each: The Astrolabes and Related Texts 500
effects of intravenous lidocaine on postoperative pain and gastrointestinal function recovery following gastrointestinal surgery: a meta-analysis 400
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3384092
求助须知:如何正确求助?哪些是违规求助? 2998196
关于积分的说明 8777740
捐赠科研通 2683796
什么是DOI,文献DOI怎么找? 1469862
科研通“疑难数据库(出版商)”最低求助积分说明 679572
邀请新用户注册赠送积分活动 671868