Upgrading the Density Functional Theory with Machine Learning for the Fast Prediction of Polyaromatic Reactivity at Bimetallic Catalysts

双金属片 密度泛函理论 催化作用 反应性(心理学) 背景(考古学) 吸附 化学 分子 计算化学 计算机科学 计算 物理化学 算法 有机化学 医学 替代医学 病理 古生物学 生物
作者
Jérémie Zaffran,Meiyuan Jiao,Raphaël Wischert,Stéphane Streiff,Sébastien Paul
出处
期刊:Journal of Physical Chemistry C [American Chemical Society]
卷期号:128 (12): 5084-5092
标识
DOI:10.1021/acs.jpcc.4c00461
摘要

Polyaromatic molecules are compounds of major importance in chemistry. However, simulating their reactivity at the solid catalyst surface with density functional theory (DFT) is very challenging. Indeed, such species require large slab models for their adsorption, hence resulting in a considerable number of atoms and thus significant computational time. In the recent context of increasing use in machine learning (ML), it is clear that such tools are of first interest to speed-up DFT calculations. Considering anthraquinone (AQ) hydrogenation on the surface of metal-doped Pd-based supported catalysts as a model reaction and focusing on the main reaction products, we propose here a method aiming at predicting the energy of the determining states from several descriptors related to a small molecular fragment, benzoquinone (BZQ) adsorbed at different surfaces. We were able to identify two distinct models, both performing with a high efficiency and based on different kinds of descriptors. While the first one involving a single thermodynamic descriptor is more accurate, the second one including a combination of electronic and geometric parameters is still relevant to predict reliable qualitative trends. Interestingly, we showed that simple linear regression tools can compete with other complex ML techniques, providing very accurate models with remarkable stability. Such an approach can be applied to easily assess the effective barriers of formation of several species on catalysts presenting different bimetallic compositions, hence enabling the screening of the catalytic activity and selectivity of various surfaces in a record time. While heavy DFT computations are generally required to optimize each intermediate and transition state, our strategy relies on a single adsorbate relaxation, hence, resulting in a tremendous gain of time. Therefore, our method is crucial for the accelerated computational design of solid catalysts and may have applications in various fields of the chemical industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桂桂完成签到,获得积分10
3秒前
4秒前
李欣月完成签到,获得积分10
6秒前
7秒前
8秒前
8秒前
NexusExplorer应助大蒜头采纳,获得10
8秒前
小马甲应助梦溪采纳,获得10
9秒前
10秒前
难过千易发布了新的文献求助10
10秒前
10秒前
尊敬飞鸟完成签到 ,获得积分10
11秒前
一支布洛芬完成签到,获得积分20
11秒前
12秒前
Phoenix Hu发布了新的文献求助10
13秒前
13秒前
长乐完成签到,获得积分10
13秒前
14秒前
明矾发布了新的文献求助10
14秒前
16秒前
16秒前
16秒前
lll完成签到,获得积分10
17秒前
17秒前
18秒前
整齐的忆彤完成签到,获得积分10
19秒前
伊斯坦布尔的鱼应助叁肆采纳,获得10
21秒前
akjsi发布了新的文献求助10
21秒前
毛毛发布了新的文献求助10
21秒前
22秒前
22秒前
顺心的笑翠完成签到 ,获得积分10
23秒前
23秒前
科研通AI2S应助zy采纳,获得10
24秒前
思源应助晚来天欲雪采纳,获得10
24秒前
25秒前
思源应助酷酷的水儿采纳,获得10
26秒前
桂桂发布了新的文献求助10
26秒前
量子星尘发布了新的文献求助10
26秒前
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976177
求助须知:如何正确求助?哪些是违规求助? 3520366
关于积分的说明 11202970
捐赠科研通 3256899
什么是DOI,文献DOI怎么找? 1798535
邀请新用户注册赠送积分活动 877725
科研通“疑难数据库(出版商)”最低求助积分说明 806516