已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Upgrading the Density Functional Theory with Machine Learning for the Fast Prediction of Polyaromatic Reactivity at Bimetallic Catalysts

双金属片 密度泛函理论 催化作用 反应性(心理学) 背景(考古学) 吸附 化学 分子 计算化学 计算机科学 计算 物理化学 算法 有机化学 病理 古生物学 生物 医学 替代医学
作者
Jérémie Zaffran,Meiyuan Jiao,Raphaël Wischert,Stéphane Streiff,Sébastien Paul
出处
期刊:Journal of Physical Chemistry C [American Chemical Society]
卷期号:128 (12): 5084-5092
标识
DOI:10.1021/acs.jpcc.4c00461
摘要

Polyaromatic molecules are compounds of major importance in chemistry. However, simulating their reactivity at the solid catalyst surface with density functional theory (DFT) is very challenging. Indeed, such species require large slab models for their adsorption, hence resulting in a considerable number of atoms and thus significant computational time. In the recent context of increasing use in machine learning (ML), it is clear that such tools are of first interest to speed-up DFT calculations. Considering anthraquinone (AQ) hydrogenation on the surface of metal-doped Pd-based supported catalysts as a model reaction and focusing on the main reaction products, we propose here a method aiming at predicting the energy of the determining states from several descriptors related to a small molecular fragment, benzoquinone (BZQ) adsorbed at different surfaces. We were able to identify two distinct models, both performing with a high efficiency and based on different kinds of descriptors. While the first one involving a single thermodynamic descriptor is more accurate, the second one including a combination of electronic and geometric parameters is still relevant to predict reliable qualitative trends. Interestingly, we showed that simple linear regression tools can compete with other complex ML techniques, providing very accurate models with remarkable stability. Such an approach can be applied to easily assess the effective barriers of formation of several species on catalysts presenting different bimetallic compositions, hence enabling the screening of the catalytic activity and selectivity of various surfaces in a record time. While heavy DFT computations are generally required to optimize each intermediate and transition state, our strategy relies on a single adsorbate relaxation, hence, resulting in a tremendous gain of time. Therefore, our method is crucial for the accelerated computational design of solid catalysts and may have applications in various fields of the chemical industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晨晨发布了新的文献求助50
1秒前
rita_sun1969完成签到,获得积分10
1秒前
2秒前
魏行方完成签到 ,获得积分10
3秒前
魔叶树完成签到 ,获得积分10
3秒前
哈哈完成签到 ,获得积分10
6秒前
higgs发布了新的文献求助10
7秒前
杨二锤完成签到 ,获得积分10
8秒前
晨晨完成签到,获得积分10
10秒前
九天完成签到 ,获得积分10
14秒前
笨笨的荧荧完成签到 ,获得积分10
17秒前
小雯完成签到 ,获得积分10
18秒前
SHD完成签到 ,获得积分10
21秒前
天才鱼完成签到 ,获得积分10
22秒前
朴素梦寒完成签到,获得积分20
22秒前
钮祜禄萱完成签到 ,获得积分10
23秒前
sweet完成签到,获得积分10
23秒前
朴素梦寒发布了新的文献求助10
26秒前
sweet发布了新的文献求助10
28秒前
29秒前
30秒前
qwq完成签到,获得积分20
30秒前
CodeCraft应助GK采纳,获得10
31秒前
科研菜鸟完成签到,获得积分10
32秒前
CCD完成签到 ,获得积分10
32秒前
惊奇先生1发布了新的文献求助10
33秒前
路内里发布了新的文献求助10
34秒前
Harlotte完成签到 ,获得积分10
37秒前
别看我只是一只羊完成签到,获得积分20
38秒前
41秒前
今后应助recardo采纳,获得30
42秒前
zuhangzhao完成签到 ,获得积分10
42秒前
43秒前
TheaGao完成签到 ,获得积分10
44秒前
44秒前
45秒前
47秒前
begonia2021发布了新的文献求助10
49秒前
lvsehx发布了新的文献求助10
51秒前
51秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
肝病学名词 500
Evolution 3rd edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3171323
求助须知:如何正确求助?哪些是违规求助? 2822317
关于积分的说明 7938730
捐赠科研通 2482787
什么是DOI,文献DOI怎么找? 1322791
科研通“疑难数据库(出版商)”最低求助积分说明 633742
版权声明 602627