Upgrading the Density Functional Theory with Machine Learning for the Fast Prediction of Polyaromatic Reactivity at Bimetallic Catalysts

双金属片 密度泛函理论 催化作用 反应性(心理学) 背景(考古学) 吸附 化学 分子 计算化学 计算机科学 计算 物理化学 算法 有机化学 医学 替代医学 病理 古生物学 生物
作者
Jérémie Zaffran,Meiyuan Jiao,Raphaël Wischert,Stéphane Streiff,Sébastien Paul
出处
期刊:Journal of Physical Chemistry C [American Chemical Society]
卷期号:128 (12): 5084-5092
标识
DOI:10.1021/acs.jpcc.4c00461
摘要

Polyaromatic molecules are compounds of major importance in chemistry. However, simulating their reactivity at the solid catalyst surface with density functional theory (DFT) is very challenging. Indeed, such species require large slab models for their adsorption, hence resulting in a considerable number of atoms and thus significant computational time. In the recent context of increasing use in machine learning (ML), it is clear that such tools are of first interest to speed-up DFT calculations. Considering anthraquinone (AQ) hydrogenation on the surface of metal-doped Pd-based supported catalysts as a model reaction and focusing on the main reaction products, we propose here a method aiming at predicting the energy of the determining states from several descriptors related to a small molecular fragment, benzoquinone (BZQ) adsorbed at different surfaces. We were able to identify two distinct models, both performing with a high efficiency and based on different kinds of descriptors. While the first one involving a single thermodynamic descriptor is more accurate, the second one including a combination of electronic and geometric parameters is still relevant to predict reliable qualitative trends. Interestingly, we showed that simple linear regression tools can compete with other complex ML techniques, providing very accurate models with remarkable stability. Such an approach can be applied to easily assess the effective barriers of formation of several species on catalysts presenting different bimetallic compositions, hence enabling the screening of the catalytic activity and selectivity of various surfaces in a record time. While heavy DFT computations are generally required to optimize each intermediate and transition state, our strategy relies on a single adsorbate relaxation, hence, resulting in a tremendous gain of time. Therefore, our method is crucial for the accelerated computational design of solid catalysts and may have applications in various fields of the chemical industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助白秋秋采纳,获得10
刚刚
微笑冰旋给微笑冰旋的求助进行了留言
刚刚
刚刚
刚刚
NexusExplorer应助duoduo采纳,获得10
1秒前
3秒前
烟花应助程院采纳,获得10
4秒前
向北发布了新的文献求助10
4秒前
loong完成签到,获得积分10
4秒前
马彦杰发布了新的文献求助10
4秒前
5秒前
5秒前
11完成签到,获得积分10
5秒前
我爱化学完成签到,获得积分10
7秒前
7秒前
8秒前
SYLH应助EZ采纳,获得10
8秒前
9秒前
科研通AI5应助科里斯皮尔采纳,获得10
10秒前
10秒前
12秒前
优秀静珊发布了新的文献求助10
12秒前
12秒前
123发布了新的文献求助10
14秒前
ChatGPT发布了新的文献求助10
14秒前
zz发布了新的文献求助10
15秒前
瘦瘦妖妖发布了新的文献求助10
15秒前
海纳百川完成签到,获得积分10
18秒前
支支发布了新的文献求助10
19秒前
善学以致用应助huayi采纳,获得10
20秒前
21秒前
21秒前
21秒前
赘婿应助Huang采纳,获得10
25秒前
量子星尘发布了新的文献求助10
25秒前
优秀静珊完成签到,获得积分10
26秒前
26秒前
27秒前
27秒前
Hello应助扎心采纳,获得10
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3971732
求助须知:如何正确求助?哪些是违规求助? 3516385
关于积分的说明 11182415
捐赠科研通 3251598
什么是DOI,文献DOI怎么找? 1795960
邀请新用户注册赠送积分活动 876171
科研通“疑难数据库(出版商)”最低求助积分说明 805340