Upgrading the Density Functional Theory with Machine Learning for the Fast Prediction of Polyaromatic Reactivity at Bimetallic Catalysts

双金属片 密度泛函理论 催化作用 反应性(心理学) 背景(考古学) 吸附 化学 分子 计算化学 计算机科学 计算 物理化学 算法 有机化学 医学 替代医学 病理 古生物学 生物
作者
Jérémie Zaffran,Meiyuan Jiao,Raphaël Wischert,Stéphane Streiff,Sébastien Paul
出处
期刊:Journal of Physical Chemistry C [American Chemical Society]
卷期号:128 (12): 5084-5092
标识
DOI:10.1021/acs.jpcc.4c00461
摘要

Polyaromatic molecules are compounds of major importance in chemistry. However, simulating their reactivity at the solid catalyst surface with density functional theory (DFT) is very challenging. Indeed, such species require large slab models for their adsorption, hence resulting in a considerable number of atoms and thus significant computational time. In the recent context of increasing use in machine learning (ML), it is clear that such tools are of first interest to speed-up DFT calculations. Considering anthraquinone (AQ) hydrogenation on the surface of metal-doped Pd-based supported catalysts as a model reaction and focusing on the main reaction products, we propose here a method aiming at predicting the energy of the determining states from several descriptors related to a small molecular fragment, benzoquinone (BZQ) adsorbed at different surfaces. We were able to identify two distinct models, both performing with a high efficiency and based on different kinds of descriptors. While the first one involving a single thermodynamic descriptor is more accurate, the second one including a combination of electronic and geometric parameters is still relevant to predict reliable qualitative trends. Interestingly, we showed that simple linear regression tools can compete with other complex ML techniques, providing very accurate models with remarkable stability. Such an approach can be applied to easily assess the effective barriers of formation of several species on catalysts presenting different bimetallic compositions, hence enabling the screening of the catalytic activity and selectivity of various surfaces in a record time. While heavy DFT computations are generally required to optimize each intermediate and transition state, our strategy relies on a single adsorbate relaxation, hence, resulting in a tremendous gain of time. Therefore, our method is crucial for the accelerated computational design of solid catalysts and may have applications in various fields of the chemical industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助刘鹏宇采纳,获得10
1秒前
可爱的函函应助沉静哲瀚采纳,获得10
1秒前
1秒前
1秒前
乖乖完成签到,获得积分20
1秒前
2秒前
2秒前
小豆芽儿完成签到,获得积分20
2秒前
布鲁鲁完成签到,获得积分10
4秒前
偷猪剑客完成签到,获得积分10
4秒前
SQ发布了新的文献求助10
4秒前
5秒前
李健应助强健的月饼采纳,获得30
5秒前
陶1122完成签到,获得积分10
5秒前
5秒前
changaipei完成签到,获得积分10
6秒前
6秒前
李子完成签到,获得积分10
6秒前
7秒前
7秒前
共享精神应助YAOYAO采纳,获得10
7秒前
qp完成签到,获得积分10
7秒前
8秒前
咕噜咕噜完成签到,获得积分20
9秒前
HEIKU应助kiska采纳,获得10
9秒前
9秒前
单薄茗完成签到,获得积分10
9秒前
9秒前
刘鹏宇完成签到,获得积分10
10秒前
danrushui777完成签到,获得积分10
10秒前
慕青应助李子采纳,获得10
10秒前
无心的怜烟完成签到,获得积分10
10秒前
拼搏的沅完成签到,获得积分10
11秒前
123完成签到,获得积分10
11秒前
11111111111完成签到,获得积分10
11秒前
清辉月凝发布了新的文献求助10
11秒前
天天快乐应助无不破哉采纳,获得10
11秒前
夏末完成签到,获得积分20
11秒前
科目三应助zzz采纳,获得10
12秒前
黄超完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678