亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Constructing a Deep Learning Radiomics Model Based on X-ray Images and Clinical Data for Predicting and Distinguishing Acute and Chronic Osteoporotic Vertebral Fractures: A Multicenter Study

无线电技术 人工智能 医学 深度学习 骨质疏松性骨折 构造(python库) 多中心研究 放射科 骨质疏松症 计算机科学 内科学 程序设计语言 随机对照试验 骨矿物
作者
Jun Zhang,Liang Xia,Jun Tang,Jianguo Xia,Yongkang Liu,Weixiao Zhang,Jiayi Liu,Zhipeng Liang,Xueli Zhang,Lin Zhang,Guangyu Tang
出处
期刊:Academic Radiology [Elsevier]
卷期号:31 (5): 2011-2026 被引量:1
标识
DOI:10.1016/j.acra.2023.10.061
摘要

To construct and validate a deep learning radiomics (DLR) model based on X-ray images for predicting and distinguishing acute and chronic osteoporotic vertebral fractures (OVFs).A total of 942 cases (1076 vertebral bodies) with both vertebral X-ray examination and MRI scans were included in this study from three hospitals. They were divided into a training cohort (n = 712), an internal validation cohort (n = 178), an external validation cohort (n = 111), and a prospective validation cohort (n = 75). The ResNet-50 model architecture was used for deep transfer learning (DTL), with pre-training performed on RadImageNet and ImageNet datasets. DTL features and radiomics features were extracted from lateral X-ray images of OVFs patients and fused together. A logistic regression model with the least absolute shrinkage and selection operator was established, with MRI showing bone marrow edema as the gold standard for acute OVFs. The performance of the model was evaluated using receiver operating characteristic curves. Eight machine learning classification models were evaluated for their ability to distinguish between acute and chronic OVFs. The Nomogram was constructed by combining clinical baseline data to achieve visualized classification assessment. The predictive performance of the best RadImageNet model and ImageNet model was compared using the Delong test. The clinical value of the Nomogram was evaluated using decision curve analysis (DCA).Pre-training resulted in 34 and 39 fused features after feature selection and fusion. The most effective machine learning algorithm in both DLR models was Light Gradient Boosting Machine. Using the Delong test, the area under the curve (AUC) for distinguishing between acute and chronic OVFs in the training cohort was 0.979 and 0.972 for the RadImageNet and ImageNet models, respectively, with no statistically significant difference between them (P = 0.235). In the internal validation cohort, external validation cohort, and prospective validation cohort, the AUCs for the two models were 0.967 vs 0.629, 0.886 vs 0.817, and 0.933 vs 0.661, respectively, with statistically significant differences in all comparisons (P < 0.05). The deep learning radiomics nomogram (DLRN) was constructed by combining the predictive model of RadImageNet with clinical baseline features, resulting in AUCs of 0.981, 0.974, 0.895, and 0.902 in the training cohort, internal validation cohort, external validation cohort, and prospective validation cohort, respectively. Using the Delong test, the AUCs for the fused feature model and the DLRN in the training cohort were 0.979 and 0.981, respectively, with no statistically significant difference between them (P = 0.169). In the internal validation cohort, external validation cohort, and prospective validation cohort, the AUCs for the two models were 0.967 vs 0.974, 0.886 vs 0.895, and 0.933 vs 0.902, respectively, with statistically significant differences in all comparisons (P < 0.05). The Nomogram showed a slight improvement in predictive performance in the internal and external validation cohort, but a slight decrease in the prospective validation cohort (0.933 vs 0.902). DCA showed that the Nomogram provided more benefits to patients compared to the DLR models.Compared to the ImageNet model, the RadImageNet model has higher diagnostic value in distinguishing between acute and chronic OVFs. Furthermore, the diagnostic performance of the model is further improved when combined with clinical baseline features to construct the Nomogram.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
moiumuio完成签到,获得积分10
1秒前
执着的un琪完成签到 ,获得积分10
4秒前
5秒前
阿俊1212发布了新的文献求助10
8秒前
sume24应助ArenPSZ采纳,获得10
9秒前
9秒前
10秒前
tiantian完成签到,获得积分10
12秒前
111完成签到 ,获得积分10
12秒前
紫云发布了新的文献求助10
14秒前
善良的西瓜完成签到 ,获得积分10
18秒前
21秒前
xymm1204完成签到,获得积分10
24秒前
25秒前
27秒前
28秒前
木木发布了新的文献求助50
31秒前
高山七石发布了新的文献求助10
32秒前
32秒前
紫云完成签到 ,获得积分10
35秒前
37秒前
深情安青应助科研通管家采纳,获得10
53秒前
科研通AI2S应助科研通管家采纳,获得10
53秒前
CodeCraft应助科研通管家采纳,获得10
53秒前
53秒前
1分钟前
msuyue完成签到,获得积分10
1分钟前
1分钟前
可爱的皮卡丘完成签到,获得积分10
1分钟前
1分钟前
willow关注了科研通微信公众号
1分钟前
丽江阿镇完成签到,获得积分10
1分钟前
CodeCraft应助oleskarabach采纳,获得10
1分钟前
telepathy应助oleskarabach采纳,获得10
1分钟前
江离完成签到 ,获得积分10
1分钟前
慧木完成签到 ,获得积分10
1分钟前
1分钟前
传奇3应助QLLX采纳,获得10
1分钟前
qqq完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
Plate Tectonics 500
Igneous rocks and processes: a practical guide(第二版) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3417434
求助须知:如何正确求助?哪些是违规求助? 3019113
关于积分的说明 8886497
捐赠科研通 2706542
什么是DOI,文献DOI怎么找? 1484365
科研通“疑难数据库(出版商)”最低求助积分说明 685970
邀请新用户注册赠送积分活动 681138