Photovoltaic DC Series Arc Fault Identification Method Based on Precise Noise Reduction Algorithm

算法 噪音(视频) 小波变换 降噪 电弧故障断路器 奇异值分解 奇异谱分析 断层(地质) 小波 计算机科学 希尔伯特-黄变换 数学 人工智能 工程类 电压 白噪声 短路 电信 图像(数学) 电气工程 地质学 地震学
作者
Chunjiang Zhang,Ziliang Kang,Caifeng Lv,Qingquan Jia
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/jsen.2023.3344759
摘要

Due to the influence of the external environment and the internal noise of the inverter, the noise harmonic injection may not be obvious in the initial stage of photovoltaic DC arc generation, resulting in the arc fault with strong concealment and difficult to detect. To solve this problem, an arc fault detection method based on improved empirical wavelet transform (IEWT) and improved singular value decomposition (ISVD) is proposed in this paper. Firstly, the improved empirical wavelet transform is used to realize the accurate segmentation of the noise spectrum, and then the construction dimension of the corresponding matrix of each component is reduced by improving the singular value decomposition, which not only achieves accurate noise reduction but also effectively reduces the amount of calculation of the algorithm. It makes the normal signal and the arc fault signal show obvious differentiation after noise reduction. In order to realize accurate detection of hidden arc, the appropriate transition interval is set according to each characteristic index, and the suspected arc fault signal is judged by the ratio of high and low frequency characteristic indexes. Finally, the improved entropy weight method (IEWM) is used to construct the fusion characteristic index to realize a fast and accurate diagnosis of arc fault. Through a series of comparative experiments, it can be proved that, compared with the commonly used AI method, the detection algorithm in this paper achieves 99.47% detection accuracy and improves the average calculation speed by 56.7%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助猜猜我是谁采纳,获得10
刚刚
喜悦寒凝完成签到,获得积分10
1秒前
1秒前
小菜鸟001应助高兴的中蓝采纳,获得10
1秒前
2秒前
干净冰露完成签到,获得积分10
3秒前
大个应助霜打了的葡萄采纳,获得10
3秒前
mi完成签到,获得积分10
3秒前
孙鹏完成签到,获得积分10
4秒前
义气莫茗完成签到 ,获得积分10
4秒前
阔达的海完成签到,获得积分10
4秒前
宣问安发布了新的文献求助30
5秒前
天天完成签到,获得积分10
6秒前
不安青牛应助小鹿采纳,获得10
6秒前
猜猜我是谁完成签到,获得积分10
6秒前
6秒前
一个左正蹬完成签到,获得积分10
6秒前
NexusExplorer应助小苏采纳,获得10
7秒前
hahaha发布了新的文献求助10
7秒前
2123121321321发布了新的文献求助10
7秒前
ryan完成签到,获得积分10
7秒前
爆米花应助Ula采纳,获得10
8秒前
nuantong1shy完成签到,获得积分10
8秒前
奕奕完成签到,获得积分10
8秒前
小蘑菇应助。。采纳,获得10
8秒前
星期一完成签到,获得积分10
9秒前
youyou完成签到,获得积分10
9秒前
小燚完成签到 ,获得积分10
10秒前
10秒前
厄尔尼诺完成签到,获得积分10
10秒前
诉与山风听完成签到,获得积分10
11秒前
lc339完成签到,获得积分10
11秒前
星期一发布了新的文献求助30
11秒前
Dandanhuang完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
12秒前
Mr咸蛋黄完成签到,获得积分10
12秒前
冷傲半邪完成签到,获得积分10
13秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Taxonomic and phylogenetic evidence reveal two new Volvariella species (Agaricales, Volvariellaceae) from Denmark 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3445420
求助须知:如何正确求助?哪些是违规求助? 3041448
关于积分的说明 8985460
捐赠科研通 2730053
什么是DOI,文献DOI怎么找? 1497339
科研通“疑难数据库(出版商)”最低求助积分说明 692179
邀请新用户注册赠送积分活动 689745