Local feature matching using deep learning: A survey

计算机科学 匹配(统计) 人工智能 特征(语言学) 稳健性(进化) 特征匹配 模式识别(心理学) 机器学习 计算机视觉 数据挖掘 特征提取 统计 数学 哲学 基因 生物化学 化学 语言学
作者
Shibiao Xu,Shunpeng Chen,Rongtao Xu,Changwei Wang,Peng Lu,Li Guo
出处
期刊:Information Fusion [Elsevier BV]
卷期号:107: 102344-102344
标识
DOI:10.1016/j.inffus.2024.102344
摘要

Local feature matching enjoys wide-ranging applications in the realm of computer vision, encompassing domains such as image retrieval, 3D reconstruction, and object recognition. However, challenges persist in improving the accuracy and robustness of matching due to factors like viewpoint and lighting variations. In recent years, the introduction of deep learning models has sparked widespread exploration into local feature matching techniques. The objective of this endeavor is to furnish a comprehensive overview of local feature matching methods. These methods are categorized into two key segments based on the presence of detectors. The Detector-based category encompasses models inclusive of Detect-then-Describe, Joint Detection and Description, Describe-then-Detect, as well as Graph Based techniques. In contrast, the Detector-free category comprises CNN Based, Transformer Based, and Patch Based methods. Our study extends beyond methodological analysis, incorporating evaluations of prevalent datasets and metrics to facilitate a quantitative comparison of state-of-the-art techniques. The paper also explores the practical application of local feature matching in diverse domains such as Structure from Motion, Remote Sensing Image Registration, and Medical Image Registration, underscoring its versatility and significance across various fields. Ultimately, we endeavor to outline the current challenges faced in this domain and furnish future research directions, thereby serving as a reference for researchers involved in local feature matching and its interconnected domains. A comprehensive list of studies in this survey is available at https://github.com/vignywang/Awesome-Local-Feature-Matching.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小马甲应助wangxiaogua采纳,获得10
1秒前
未至完成签到,获得积分10
1秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
冷酷秋柳发布了新的文献求助10
4秒前
江宜发布了新的文献求助10
4秒前
小薛完成签到,获得积分10
5秒前
5秒前
7秒前
李爱国应助踏实平蓝采纳,获得10
7秒前
7秒前
8秒前
9秒前
科研通AI5应助阿芝采纳,获得10
11秒前
量子星尘发布了新的文献求助10
11秒前
研友_Z1WrgL发布了新的文献求助10
12秒前
12秒前
NexusExplorer应助呃呃呃采纳,获得10
13秒前
13秒前
大力黑米发布了新的文献求助10
13秒前
13秒前
纳米发布了新的文献求助10
14秒前
Owen应助冷酷秋柳采纳,获得10
14秒前
彬彬完成签到,获得积分10
15秒前
16秒前
17秒前
19秒前
bob完成签到,获得积分10
19秒前
研友_Z1WrgL完成签到,获得积分10
19秒前
20秒前
21秒前
21秒前
21秒前
22秒前
量子星尘发布了新的文献求助10
23秒前
23秒前
23秒前
安详冥王星完成签到 ,获得积分10
23秒前
晨晨CC发布了新的文献求助10
24秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666106
求助须知:如何正确求助?哪些是违规求助? 3225155
关于积分的说明 9761696
捐赠科研通 2935128
什么是DOI,文献DOI怎么找? 1607459
邀请新用户注册赠送积分活动 759166
科研通“疑难数据库(出版商)”最低求助积分说明 735153