Establishment and Validation of the Novel Necroptosis-related Genes for Predicting Stemness and Immunity of Hepatocellular Carcinoma via Machine-learning Algorithm

肝细胞癌 Lasso(编程语言) 列线图 逻辑回归 单变量 比例危险模型 坏死性下垂 肿瘤科 多元统计 生物 算法 癌症研究 医学 内科学 机器学习 程序性细胞死亡 计算机科学 细胞凋亡 万维网 生物化学
作者
Yao-Ting Li,Xuezhen Zeng
出处
期刊:Combinatorial Chemistry & High Throughput Screening [Bentham Science Publishers]
卷期号:28 (1): 146-165
标识
DOI:10.2174/0113862073271292231108113547
摘要

Background: Necroptosis, a recently identified mechanism of programmed cell death, exerts significant influence on various aspects of cancer biology, including tumor cell proliferation, stemness, metastasis, and immunosuppression. However, the role of necroptosis-related genes (NRGs) in Hepatocellular Carcinoma (HCC) remains elusive. Methods: In this study, we assessed the mutation signature, copy number variation, and expression of 37 NRGs in HCC using the TCGA-LIHC dataset. We further validated our results using the ICGC-LIRI-JP dataset. To construct our prognostic model, we utilized the least absolute shrinkage and selection operator (LASSO), and evaluated the predictive efficacy of the NRGs-score using various machine learning algorithms, including K-M curves, time-ROC curves, univariate and multivariate Cox regression, and nomogram. In addition, we analyzed immune infiltration using the CIBERSOFT and ssGSEA algorithms, calculated the stemness index through the one-class logistic regression (OCLR) algorithm, and performed anti-cancer stem cells (CSCs) drug sensitivity analysis using oncoPredict. Finally, we validated the expression of the prognostic NRGs through qPCR both in vitro and in vivo. Results: About 18 out of 37 NRGs were found to be differentially expressed in HCC and correlated with clinical outcomes. To construct a prognostic model, six signature genes (ALDH2, EZH2, PGAM5, PLK1, SQSTM1, and TARDBP) were selected using LASSO analysis. These genes were then employed to categorize HCC patients into two subgroups based on NRGs-score (low vs. high). A high NRGs score was associated with a worse prognosis. Furthermore, univariate and multivariate Cox regression analyses were performed to confirm the NRGs-score as an independent risk factor. These analyses revealed strong associations between NRGs-score and critical factors, such as AFP, disease stage, and tumor grade in the HCC cohort. NRGs-score effectively predicted the 1-, 3-, and 5-year survival of HCC patients. Immune infiltration analysis further revealed that the expression of immune checkpoint molecules was significantly enhanced in the high NRGs-score group. Stemness analysis in the HCC cohort showed that NRGs-score was positively correlated with mRNA stemness index, and patients with high NRGs-score were sensitive to CSCs inhibitors. The findings from the external validation cohort provided confirmation that the NRGs-score presented a trait with universal applicability in accurately predicting the survival of HCC. Additionally, the six prognostic genes were consistently differentially expressed in both the HCC cell line and the mouse HCC model. Conclusions: Our study demonstrated the pivotal role of NRGs in promoting stemness and immune suppression in HCC and established a robust model which could successfully predict HCC prognosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Alvin完成签到 ,获得积分10
3秒前
蓝桉完成签到 ,获得积分10
3秒前
量子星尘发布了新的文献求助10
15秒前
ABC完成签到,获得积分10
17秒前
liukanhai应助科研通管家采纳,获得10
17秒前
搜集达人应助Wang采纳,获得10
20秒前
21秒前
蒲蒲完成签到 ,获得积分10
24秒前
zhaosiqi完成签到 ,获得积分10
24秒前
量子星尘发布了新的文献求助20
30秒前
35秒前
37秒前
月军完成签到,获得积分10
41秒前
量子星尘发布了新的文献求助10
47秒前
江幻天完成签到,获得积分10
50秒前
韩钰小宝完成签到 ,获得积分10
1分钟前
飞快的雅青完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
Kidmuse完成签到,获得积分10
1分钟前
追寻的续完成签到 ,获得积分10
1分钟前
1分钟前
bckl888完成签到,获得积分10
1分钟前
1分钟前
bill完成签到,获得积分10
1分钟前
明理问柳发布了新的文献求助10
1分钟前
ky应助xiaoX12138采纳,获得10
1分钟前
明理问柳完成签到,获得积分10
1分钟前
坚强的嚣完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
gxzsdf完成签到 ,获得积分10
1分钟前
我思故我在完成签到,获得积分10
1分钟前
1分钟前
阿帕奇完成签到 ,获得积分10
1分钟前
Conner完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
zhang完成签到 ,获得积分10
1分钟前
wol007完成签到 ,获得积分10
1分钟前
123完成签到 ,获得积分10
1分钟前
Justtry完成签到 ,获得积分20
1分钟前
naiyouqiu1989完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4613016
求助须知:如何正确求助?哪些是违规求助? 4018011
关于积分的说明 12436990
捐赠科研通 3700338
什么是DOI,文献DOI怎么找? 2040716
邀请新用户注册赠送积分活动 1073470
科研通“疑难数据库(出版商)”最低求助积分说明 957104