Analysis and comparison of machine learning methods for species identification utilizing ATR-FTIR spectroscopy

人工智能 鉴定(生物学) 傅里叶变换红外光谱 计算机科学 光谱学 分析化学(期刊) 化学 材料科学 生物 色谱法 物理 植物 光学 量子力学
作者
Xiangyan Zhang,Fengqin Yang,Jiao Xiao,Hongke Qu,Ngando Fernand Jocelin,Lipin Ren,Yadong Guo
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier BV]
卷期号:308: 123713-123713 被引量:7
标识
DOI:10.1016/j.saa.2023.123713
摘要

Accurate identification of insect species holds paramount significance in diverse fields as it facilitates a comprehensive understanding of their ecological habits, distribution range, and impact on both the environment and humans. While morphological characteristics have traditionally been employed for species identification, the utilization of empty pupariums for this purpose remains relatively limited. In this study, ATR-FTIR was employed to acquire spectral information from empty pupariums of five fly species, subjecting the data to spectral pre-processing to obtain average spectra for preliminary analysis. Subsequently, PCA and OPLS-DA were utilized for clustering and classification. Notably, two wavebands (3000 to 2800 cm-1 and 1800 to 1300 cm-1) were found to be significant in distinguishing A. grahami. Further, we established three machine learning models, including SVM, KNN, and RF, to analyze spectra from different waveband groups. The biological fingerprint region (1800 to 1300 cm-1) demonstrated a substantial advantage in identifying empty puparium species. Remarkably, the SVM model exhibited an impressive accuracy of 100% in identifying all five fly species. This study represents the first instance of employing infrared spectroscopy and machine learning methods for identifying insect species using empty pupariums, providing a robust research foundation for future investigations in this area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
徐小哼发布了新的文献求助10
1秒前
hjhhje发布了新的文献求助10
2秒前
2秒前
iRan完成签到,获得积分10
3秒前
科目三应助闪闪的发夹采纳,获得10
3秒前
沐沧澜完成签到 ,获得积分10
4秒前
星辰大海应助zzzz采纳,获得10
7秒前
贾克斯发布了新的文献求助10
7秒前
8R60d8应助沐颜采纳,获得10
8秒前
猫猫侠完成签到,获得积分10
10秒前
10秒前
11秒前
12秒前
叶123发布了新的文献求助10
12秒前
猪猪hero应助a11447采纳,获得10
13秒前
桐桐应助半截神经病采纳,获得10
15秒前
JamesPei应助结实的迎梅采纳,获得10
15秒前
shiy发布了新的文献求助10
16秒前
16秒前
LIU完成签到,获得积分10
17秒前
17秒前
luodaxia发布了新的文献求助10
19秒前
ding应助lili采纳,获得10
19秒前
领导范儿应助胡杨采纳,获得10
20秒前
bkagyin应助yuyuyu采纳,获得10
21秒前
Ava应助pharrah采纳,获得10
21秒前
22秒前
YMM完成签到,获得积分10
22秒前
香蕉觅云应助科研通管家采纳,获得10
22秒前
天天快乐应助科研通管家采纳,获得10
22秒前
柯一一应助科研通管家采纳,获得10
22秒前
今后应助科研通管家采纳,获得10
22秒前
shiy完成签到,获得积分20
22秒前
Ava应助科研通管家采纳,获得10
22秒前
上官若男应助科研通管家采纳,获得10
22秒前
ding应助科研通管家采纳,获得10
23秒前
wanci应助科研通管家采纳,获得10
23秒前
脑洞疼应助科研通管家采纳,获得20
23秒前
ding应助科研通管家采纳,获得10
23秒前
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959677
求助须知:如何正确求助?哪些是违规求助? 3505910
关于积分的说明 11126825
捐赠科研通 3237865
什么是DOI,文献DOI怎么找? 1789389
邀请新用户注册赠送积分活动 871691
科研通“疑难数据库(出版商)”最低求助积分说明 802963