Catalyst Energy Prediction with CatBERTa: Unveiling Feature Exploration Strategies through Large Language Models

计算机科学 编码器 可见的 图形 人工智能 机器学习 理论计算机科学 物理 量子力学 操作系统
作者
Janghoon Ock,Chakradhar Guntuboina,Amir Barati Farimani
出处
期刊:ACS Catalysis [American Chemical Society]
卷期号:13 (24): 16032-16044 被引量:12
标识
DOI:10.1021/acscatal.3c04956
摘要

Efficient catalyst screening necessitates predictive models for adsorption energy, which is a key descriptor of reactivity. Prevailing methods, notably graph neural networks (GNNs), demand precise atomic coordinates for constructing graph representations, while the integration of observable attributes remains challenging. This research introduces CatBERTa, an energy prediction Transformer model that uses textual inputs. Built on a Transformer encoder pretrained for language modeling purposes, CatBERTa processes human-interpretable text, incorporating target features. Attention score analysis reveals CatBERTa's focus on tokens related to adsorbates, bulk composition, and their interacting atoms. Moreover, interacting atoms emerge as effective descriptors for adsorption configurations, while factors such as the bond length and atomic properties of these atoms offer limited predictive contributions. In predicting the adsorption energy from textual representations of initial structures, CatBERTa exhibits a precision comparable to that of conventional GNNs. Notably, in subsets recognized for their high accuracy with GNNs, CatBERTa consistently achieves a mean absolute error of 0.35 eV. Furthermore, the subtraction of the CatBERTa-predicted energies effectively cancels out their systematic errors by as much as 19.3% for chemically similar systems, surpassing the error reduction observed in GNNs. This outcome highlights its potential to enhance the accuracy of the energy difference predictions. This research establishes a fundamental framework for text-based catalyst property prediction without relying on graph representations while also unveiling intricate feature–property relationships.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
陈陈陈发布了新的文献求助10
1秒前
星辰大海应助111采纳,获得10
2秒前
灵巧墨镜发布了新的文献求助10
3秒前
zzsossos发布了新的文献求助10
3秒前
不期而遇完成签到 ,获得积分20
3秒前
Suree发布了新的文献求助10
4秒前
jjjjchou发布了新的文献求助10
4秒前
愉快的自行车完成签到,获得积分10
4秒前
Liz1054发布了新的文献求助10
5秒前
5秒前
5秒前
YJH发布了新的文献求助30
6秒前
7秒前
8秒前
9秒前
归尘发布了新的文献求助10
9秒前
缓慢的友灵完成签到,获得积分20
11秒前
长安遗梦完成签到,获得积分10
11秒前
海岸完成签到,获得积分20
11秒前
11秒前
思源应助沉钧采纳,获得10
13秒前
bkagyin应助jayus采纳,获得10
14秒前
14秒前
14秒前
14秒前
14秒前
15秒前
dyy123发布了新的文献求助10
15秒前
llllll完成签到,获得积分10
15秒前
熊佳璇完成签到,获得积分10
15秒前
aiya完成签到,获得积分10
16秒前
科研顺利完成签到,获得积分10
16秒前
贱小贱完成签到,获得积分10
16秒前
英姑应助刘佳豪采纳,获得10
16秒前
17秒前
17秒前
Wlin完成签到,获得积分10
18秒前
黄晓丽完成签到,获得积分20
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637185
求助须知:如何正确求助?哪些是违规求助? 4742945
关于积分的说明 14998249
捐赠科研通 4795434
什么是DOI,文献DOI怎么找? 2561969
邀请新用户注册赠送积分活动 1521481
关于科研通互助平台的介绍 1481513