Catalyst Energy Prediction with CatBERTa: Unveiling Feature Exploration Strategies through Large Language Models

计算机科学 编码器 可见的 图形 人工智能 机器学习 理论计算机科学 物理 量子力学 操作系统
作者
Janghoon Ock,Chakradhar Guntuboina,Amir Barati Farimani
出处
期刊:ACS Catalysis 卷期号:13 (24): 16032-16044 被引量:7
标识
DOI:10.1021/acscatal.3c04956
摘要

Efficient catalyst screening necessitates predictive models for adsorption energy, which is a key descriptor of reactivity. Prevailing methods, notably graph neural networks (GNNs), demand precise atomic coordinates for constructing graph representations, while the integration of observable attributes remains challenging. This research introduces CatBERTa, an energy prediction Transformer model that uses textual inputs. Built on a Transformer encoder pretrained for language modeling purposes, CatBERTa processes human-interpretable text, incorporating target features. Attention score analysis reveals CatBERTa’s focus on tokens related to adsorbates, bulk composition, and their interacting atoms. Moreover, interacting atoms emerge as effective descriptors for adsorption configurations, while factors such as the bond length and atomic properties of these atoms offer limited predictive contributions. In predicting the adsorption energy from textual representations of initial structures, CatBERTa exhibits a precision comparable to that of conventional GNNs. Notably, in subsets recognized for their high accuracy with GNNs, CatBERTa consistently achieves a mean absolute error of 0.35 eV. Furthermore, the subtraction of the CatBERTa-predicted energies effectively cancels out their systematic errors by as much as 19.3% for chemically similar systems, surpassing the error reduction observed in GNNs. This outcome highlights its potential to enhance the accuracy of the energy difference predictions. This research establishes a fundamental framework for text-based catalyst property prediction without relying on graph representations while also unveiling intricate feature–property relationships.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Tonnyjing应助yyyyyyy采纳,获得10
1秒前
1秒前
路人丨安完成签到,获得积分10
2秒前
goodesBright应助令莞采纳,获得10
2秒前
2秒前
3秒前
4秒前
田様应助左丘冥采纳,获得10
4秒前
5秒前
93发布了新的文献求助10
7秒前
xumodehudie完成签到 ,获得积分10
8秒前
9秒前
尛瞐慶成发布了新的文献求助10
10秒前
hj发布了新的文献求助10
11秒前
偶吼吼完成签到,获得积分10
11秒前
12秒前
12秒前
fifteen发布了新的文献求助10
12秒前
LSX完成签到,获得积分10
13秒前
内向的小凡完成签到,获得积分10
13秒前
yy完成签到,获得积分20
14秒前
15秒前
15秒前
重景完成签到 ,获得积分10
15秒前
Stove完成签到,获得积分10
16秒前
研友_VZG7GZ应助乐求知采纳,获得10
16秒前
哦吼完成签到 ,获得积分10
19秒前
FashionBoy应助不当脆脆鲨采纳,获得10
19秒前
刻苦的芝完成签到,获得积分10
20秒前
20秒前
21秒前
努力成为科研大佬完成签到,获得积分10
21秒前
研友_rLmNXn发布了新的文献求助10
23秒前
sumu完成签到,获得积分10
25秒前
26秒前
一枕槐安完成签到 ,获得积分10
26秒前
eau发布了新的文献求助10
26秒前
29秒前
29秒前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 800
Cognitive linguistics critical concepts in linguistics 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3053642
求助须知:如何正确求助?哪些是违规求助? 2710842
关于积分的说明 7423746
捐赠科研通 2355391
什么是DOI,文献DOI怎么找? 1247143
科研通“疑难数据库(出版商)”最低求助积分说明 606239
版权声明 595992