Catalyst Energy Prediction with CatBERTa: Unveiling Feature Exploration Strategies through Large Language Models

计算机科学 编码器 可见的 图形 人工智能 机器学习 理论计算机科学 物理 量子力学 操作系统
作者
Janghoon Ock,Chakradhar Guntuboina,Amir Barati Farimani
出处
期刊:ACS Catalysis [American Chemical Society]
卷期号:13 (24): 16032-16044 被引量:12
标识
DOI:10.1021/acscatal.3c04956
摘要

Efficient catalyst screening necessitates predictive models for adsorption energy, which is a key descriptor of reactivity. Prevailing methods, notably graph neural networks (GNNs), demand precise atomic coordinates for constructing graph representations, while the integration of observable attributes remains challenging. This research introduces CatBERTa, an energy prediction Transformer model that uses textual inputs. Built on a Transformer encoder pretrained for language modeling purposes, CatBERTa processes human-interpretable text, incorporating target features. Attention score analysis reveals CatBERTa's focus on tokens related to adsorbates, bulk composition, and their interacting atoms. Moreover, interacting atoms emerge as effective descriptors for adsorption configurations, while factors such as the bond length and atomic properties of these atoms offer limited predictive contributions. In predicting the adsorption energy from textual representations of initial structures, CatBERTa exhibits a precision comparable to that of conventional GNNs. Notably, in subsets recognized for their high accuracy with GNNs, CatBERTa consistently achieves a mean absolute error of 0.35 eV. Furthermore, the subtraction of the CatBERTa-predicted energies effectively cancels out their systematic errors by as much as 19.3% for chemically similar systems, surpassing the error reduction observed in GNNs. This outcome highlights its potential to enhance the accuracy of the energy difference predictions. This research establishes a fundamental framework for text-based catalyst property prediction without relying on graph representations while also unveiling intricate feature–property relationships.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
fedehe发布了新的文献求助10
刚刚
刚刚
djx发布了新的文献求助10
刚刚
刚刚
希望天下0贩的0应助forever采纳,获得10
刚刚
可可完成签到,获得积分10
刚刚
孙行行发布了新的文献求助10
刚刚
田様应助仲侣弥月采纳,获得10
刚刚
SG发布了新的文献求助10
1秒前
汉堡肉应助小越越采纳,获得10
1秒前
1秒前
yadikar发布了新的文献求助10
1秒前
龙晴发布了新的文献求助10
2秒前
情怀应助花砸采纳,获得10
2秒前
无极微光应助星期日采纳,获得20
2秒前
华仔应助欣欣欣然采纳,获得10
2秒前
陈浩浪发布了新的文献求助10
2秒前
无辜丹翠发布了新的文献求助10
3秒前
上官若男应助搞怪小凡采纳,获得10
3秒前
甄幻梦完成签到,获得积分10
3秒前
打工科研完成签到 ,获得积分10
3秒前
3秒前
琉璃完成签到,获得积分10
3秒前
3秒前
3秒前
酷波er应助炙热的灵薇采纳,获得10
4秒前
充电宝应助桑尼号采纳,获得10
4秒前
Nancy发布了新的文献求助10
4秒前
顾矜应助LJY采纳,获得10
4秒前
李爱国应助冷酷仇天采纳,获得10
4秒前
芝士李子完成签到,获得积分20
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
胖馨馨完成签到,获得积分10
5秒前
5秒前
学术段发布了新的文献求助10
5秒前
6秒前
luermei完成签到,获得积分10
6秒前
dp发布了新的文献求助10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5546244
求助须知:如何正确求助?哪些是违规求助? 4632131
关于积分的说明 14625170
捐赠科研通 4573805
什么是DOI,文献DOI怎么找? 2507814
邀请新用户注册赠送积分活动 1484466
关于科研通互助平台的介绍 1455707