Catalyst Energy Prediction with CatBERTa: Unveiling Feature Exploration Strategies through Large Language Models

计算机科学 编码器 可见的 图形 人工智能 机器学习 理论计算机科学 物理 量子力学 操作系统
作者
Janghoon Ock,Chakradhar Guntuboina,Amir Barati Farimani
出处
期刊:ACS Catalysis [American Chemical Society]
卷期号:13 (24): 16032-16044 被引量:12
标识
DOI:10.1021/acscatal.3c04956
摘要

Efficient catalyst screening necessitates predictive models for adsorption energy, which is a key descriptor of reactivity. Prevailing methods, notably graph neural networks (GNNs), demand precise atomic coordinates for constructing graph representations, while the integration of observable attributes remains challenging. This research introduces CatBERTa, an energy prediction Transformer model that uses textual inputs. Built on a Transformer encoder pretrained for language modeling purposes, CatBERTa processes human-interpretable text, incorporating target features. Attention score analysis reveals CatBERTa's focus on tokens related to adsorbates, bulk composition, and their interacting atoms. Moreover, interacting atoms emerge as effective descriptors for adsorption configurations, while factors such as the bond length and atomic properties of these atoms offer limited predictive contributions. In predicting the adsorption energy from textual representations of initial structures, CatBERTa exhibits a precision comparable to that of conventional GNNs. Notably, in subsets recognized for their high accuracy with GNNs, CatBERTa consistently achieves a mean absolute error of 0.35 eV. Furthermore, the subtraction of the CatBERTa-predicted energies effectively cancels out their systematic errors by as much as 19.3% for chemically similar systems, surpassing the error reduction observed in GNNs. This outcome highlights its potential to enhance the accuracy of the energy difference predictions. This research establishes a fundamental framework for text-based catalyst property prediction without relying on graph representations while also unveiling intricate feature–property relationships.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
moxi摩西完成签到,获得积分10
1秒前
卷卷完成签到,获得积分10
3秒前
时笙发布了新的文献求助10
4秒前
4秒前
pterion完成签到,获得积分10
4秒前
4秒前
6秒前
哒哒完成签到,获得积分10
8秒前
8秒前
循环发布了新的文献求助10
8秒前
幽默毛衣发布了新的文献求助10
11秒前
13秒前
循环完成签到,获得积分10
13秒前
leanne发布了新的文献求助10
13秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
15秒前
15秒前
开灯人和关灯人完成签到,获得积分20
16秒前
Stardust发布了新的文献求助10
17秒前
18秒前
FashionBoy应助爱笑晓曼采纳,获得10
19秒前
张雯思发布了新的文献求助10
20秒前
Priority完成签到,获得积分10
21秒前
光热效应发布了新的文献求助30
21秒前
风之星给风之星的求助进行了留言
21秒前
21秒前
ASH发布了新的文献求助10
21秒前
OxO完成签到,获得积分10
21秒前
22秒前
搜集达人应助快乐一江采纳,获得10
22秒前
23秒前
leanne完成签到,获得积分20
24秒前
幽默毛衣完成签到,获得积分10
25秒前
晨曦完成签到,获得积分10
25秒前
延文星发布了新的文献求助10
27秒前
张雯思发布了新的文献求助10
28秒前
28秒前
隐形曼青应助Stardust采纳,获得10
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989390
求助须知:如何正确求助?哪些是违规求助? 3531487
关于积分的说明 11254109
捐赠科研通 3270153
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809174