Impact of NAD+ metabolism on ovarian aging

NAD+激酶 烟酰胺腺嘌呤二核苷酸 衰老 生物 锡尔图因 细胞生物学 生物化学
作者
Jinghui Liang,Feiling Huang,Zhaoqi Song,Ruiyi Tang,Peng Zhang,Rong Chen
出处
期刊:Immunity & Ageing [Springer Nature]
卷期号:20 (1) 被引量:7
标识
DOI:10.1186/s12979-023-00398-w
摘要

Nicotinamide adenine dinucleotide (NAD+), a crucial coenzyme in cellular redox reactions, is closely associated with age-related functional degeneration and metabolic diseases. NAD exerts direct and indirect influences on many crucial cellular functions, including metabolic pathways, DNA repair, chromatin remodeling, cellular senescence, and immune cell functionality. These cellular processes and functions are essential for maintaining tissue and metabolic homeostasis, as well as healthy aging. Causality has been elucidated between a decline in NAD levels and multiple age-related diseases, which has been confirmed by various strategies aimed at increasing NAD levels in the preclinical setting. Ovarian aging is recognized as a natural process characterized by a decline in follicle number and function, resulting in decreased estrogen production and menopause. In this regard, it is necessary to address the many factors involved in this complicated procedure, which could improve fertility in women of advanced maternal age. Concerning the decrease in NAD+ levels as ovarian aging progresses, promising and exciting results are presented for strategies using NAD+ precursors to promote NAD+ biosynthesis, which could substantially improve oocyte quality and alleviate ovarian aging. Hence, to acquire further insights into NAD+ metabolism and biology, this review aims to probe the factors affecting ovarian aging, the characteristics of NAD+ precursors, and the current research status of NAD+ supplementation in ovarian aging. Specifically, by gaining a comprehensive understanding of these aspects, we are optimistic about the prominent progress that will be made in both research and therapy related to ovarian aging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
暴躁的嘉懿完成签到,获得积分10
刚刚
2秒前
可爱的函函应助xiu-er采纳,获得10
2秒前
甜美绣连发布了新的文献求助10
4秒前
明理尔安完成签到,获得积分10
4秒前
ee完成签到 ,获得积分10
4秒前
wenlin发布了新的文献求助10
4秒前
li发布了新的文献求助10
4秒前
4秒前
清醒发布了新的文献求助10
4秒前
差不多先生完成签到,获得积分10
5秒前
6秒前
英姑应助蒲公英采纳,获得10
6秒前
7秒前
威武的荷花完成签到,获得积分10
8秒前
10秒前
HAP应助大魔王波波采纳,获得10
10秒前
Kuripa发布了新的文献求助10
10秒前
10秒前
leena发布了新的文献求助10
11秒前
善学以致用应助feixue采纳,获得10
11秒前
爱听歌的书本完成签到,获得积分20
12秒前
小达发布了新的文献求助10
12秒前
13秒前
14秒前
明明勇勇乐完成签到,获得积分10
14秒前
辛勤的马楼完成签到,获得积分10
15秒前
15秒前
mnjknm发布了新的文献求助10
15秒前
xiu-er发布了新的文献求助10
16秒前
小二郎应助科研通管家采纳,获得10
17秒前
东方欲晓应助科研通管家采纳,获得10
17秒前
maox1aoxin应助科研通管家采纳,获得30
17秒前
abc发布了新的文献求助30
17秒前
慕青应助科研通管家采纳,获得30
17秒前
顾矜应助科研通管家采纳,获得10
17秒前
汉堡包应助科研通管家采纳,获得10
17秒前
在水一方应助科研通管家采纳,获得10
17秒前
FashionBoy应助科研通管家采纳,获得10
17秒前
丘比特应助科研通管家采纳,获得10
17秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3302671
求助须知:如何正确求助?哪些是违规求助? 2937033
关于积分的说明 8480339
捐赠科研通 2610962
什么是DOI,文献DOI怎么找? 1425486
科研通“疑难数据库(出版商)”最低求助积分说明 662367
邀请新用户注册赠送积分活动 646746