A novel approach to solve hyperbolic Buckley-Leverett equation by using a transformer based physics informed neural network

人工神经网络 变压器 双曲型偏微分方程 应用数学 计算机科学 人工智能 数学 物理 数学分析 偏微分方程 量子力学 电压
作者
Feng Zhang,Long D. Nghiem,Zhangxin Chen
标识
DOI:10.1016/j.geoen.2024.212711
摘要

Solving hyperbolic partial differential equation is a challenging task due to the non-linear feature that requires to capture the shock wave. Numerical solution relies on discretization of both spatial and temporal domain, and iterative approach like Newton's method is involved and time step size is crucial for stability and convergence in the presence of non-linearity. Physics-informed neural networks (PINNs) offer a new and versatile approach for solving partial different equations by minimizing the residual of governing equations and approaching to the initial and boundary conditions. Currently, most PINNs are built based on a simple fully connected neural network which exhibits some limitations to model complex non-linear partial differential equations. In this paper, a novel method is developed to combine Transformer model and PINNs approach (Tr-PINN) to solving a hyperbolic partial differential equation directly without any prior knowledge. Tr-PINN method is based on a series of Transformer blocks where self-attention mechanism is used to capture the non-linearity features of the solution. Unlike most PINNs models generate inputs with spatial and temporal vectors only, Tr-PINN introduces the non-linearity term mobility ratio as additional input vector. The method is tested on a classical hyperbolic problem, called Buckley-Leverett equation with non-convex flux function. We found that the Tr-PINN method can capture the water shock front effectively and provide a general solution for Buckley-Leverett equation under various mobility ratio conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yy完成签到 ,获得积分10
刚刚
刚刚
和谐又亦完成签到,获得积分10
刚刚
刚刚
申雪狐发布了新的文献求助10
1秒前
含糊的晓凡给含糊的晓凡的求助进行了留言
2秒前
SaSa发布了新的文献求助10
2秒前
和谐又亦发布了新的文献求助10
3秒前
3秒前
4秒前
星客落张江完成签到,获得积分20
4秒前
5秒前
旺旺小小贝完成签到,获得积分10
5秒前
5秒前
dora完成签到,获得积分10
5秒前
受伤白昼完成签到,获得积分10
6秒前
berry发布了新的文献求助10
6秒前
xfxx发布了新的文献求助10
6秒前
星川发布了新的文献求助30
7秒前
CodeCraft应助车紊采纳,获得10
7秒前
7秒前
老衲法号嘿嘿嘿完成签到,获得积分10
8秒前
9秒前
4U完成签到 ,获得积分10
9秒前
Owen应助嘎嘎嘎嘎采纳,获得10
9秒前
怡然灵珊发布了新的文献求助10
11秒前
xiaodu20230228完成签到 ,获得积分10
11秒前
落寞夜云发布了新的文献求助10
12秒前
12秒前
语霖仙完成签到,获得积分10
13秒前
石楠完成签到,获得积分10
14秒前
礼拜天完成签到,获得积分10
14秒前
Hello应助沉静的八宝粥采纳,获得10
16秒前
17秒前
所所应助酷酷夜安采纳,获得10
17秒前
17秒前
17秒前
Costing完成签到 ,获得积分10
18秒前
调皮的老王头完成签到,获得积分10
18秒前
希望天下0贩的0应助gdh采纳,获得10
19秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156110
求助须知:如何正确求助?哪些是违规求助? 2807513
关于积分的说明 7873605
捐赠科研通 2465844
什么是DOI,文献DOI怎么找? 1312456
科研通“疑难数据库(出版商)”最低求助积分说明 630107
版权声明 601905