已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine Learning in the Diagnosis of Endometriosis

子宫内膜异位症 医学 计算机科学 人工智能 医学物理学 妇科
作者
Ningning Zhao,Ting Hao,Fengge Zhang,Qin Ni,Dan Zhu,Yanan Wang,Kun Liu,Yali Shi,Wenjing Li,Lin Hou,Xin Mi
标识
DOI:10.2139/ssrn.4693591
摘要

Objectives: To explore the application of machine learning in the diagnosis of endometriosis.Methods: A total of 106 patients with endometriosis and 203 patients with non-endometriosis (simple cysts and simple fibroids) admitted to Shunyi Women's and Children's Hospital of Beijing Children's Hospital between January 2017andSeptember 2022 were included. All patients were free of comorbidities and confirmed by postoperative pathology to be endometriosis and non-endometriosis (fibroids and simple cysts), and the two groups were compared. We compared the baseline data, WBC, NLR (neutrophils/lymphocytes), PLR (platelets/lymphocytes), LMR(lymphocytes/monocytes), MPV, HB, CA125, CA199, coagulation, and other serological indexes of the two groups, and established an optimal model to predict whether or not the patients had endometriosis through artificial intelligence algorithms, with a view to providing new ideas for clinical diagnosis and treatment of endometriosis.Results: Random forests were found to be more advantageous than decision trees, logitboost, artificial neural networks, plain Bayes, support vector machines, and linear regression by machine learning methods. By random forest algorithm modeling, ca125combined with NLR predicted endometriosis better than ca125 alone. ca125combined with NLR predicted endometriosis with 78. 16% accuracy, 86.21%sensitivity, and 0.85 AUC(P<0.05).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
8989完成签到,获得积分10
1秒前
2秒前
瘦瘦的胖彬完成签到,获得积分10
2秒前
多多发布了新的文献求助10
2秒前
Nick应助Dou采纳,获得30
4秒前
祁尒发布了新的文献求助10
4秒前
小白白发布了新的文献求助10
6秒前
英俊的铭应助子剑采纳,获得10
7秒前
halo1994完成签到,获得积分10
10秒前
魔幻的驳完成签到,获得积分10
12秒前
热情曲奇完成签到,获得积分10
15秒前
Dou完成签到,获得积分10
16秒前
18秒前
hxq完成签到,获得积分10
19秒前
Steven发布了新的文献求助10
21秒前
怎么忘了完成签到,获得积分10
21秒前
22秒前
22秒前
搜集达人应助超级紊采纳,获得30
23秒前
木南南完成签到,获得积分10
24秒前
wyx完成签到,获得积分10
25秒前
25秒前
27秒前
Flanker发布了新的文献求助10
28秒前
酷波er应助bfbdfbdf采纳,获得10
29秒前
依依发布了新的文献求助10
29秒前
31秒前
量子星尘发布了新的文献求助10
31秒前
32秒前
一包辣条完成签到,获得积分10
32秒前
kingyz关注了科研通微信公众号
32秒前
呼呼呼完成签到,获得积分10
33秒前
slb1319发布了新的文献求助10
35秒前
35秒前
dd发布了新的文献求助10
37秒前
37秒前
whichwhy完成签到,获得积分10
39秒前
39秒前
Ll完成签到 ,获得积分10
40秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956786
求助须知:如何正确求助?哪些是违规求助? 3502880
关于积分的说明 11110500
捐赠科研通 3233866
什么是DOI,文献DOI怎么找? 1787630
邀请新用户注册赠送积分活动 870713
科研通“疑难数据库(出版商)”最低求助积分说明 802172