Machine Learning in the Diagnosis of Endometriosis

子宫内膜异位症 医学 计算机科学 人工智能 医学物理学 妇科
作者
Ningning Zhao,Ting Hao,Fengge Zhang,Qin Ni,Dan Zhu,Yanan Wang,Kun Liu,Yali Shi,Wenjing Li,Lin Hou,Xin Mi
标识
DOI:10.2139/ssrn.4693591
摘要

Objectives: To explore the application of machine learning in the diagnosis of endometriosis.Methods: A total of 106 patients with endometriosis and 203 patients with non-endometriosis (simple cysts and simple fibroids) admitted to Shunyi Women's and Children's Hospital of Beijing Children's Hospital between January 2017andSeptember 2022 were included. All patients were free of comorbidities and confirmed by postoperative pathology to be endometriosis and non-endometriosis (fibroids and simple cysts), and the two groups were compared. We compared the baseline data, WBC, NLR (neutrophils/lymphocytes), PLR (platelets/lymphocytes), LMR(lymphocytes/monocytes), MPV, HB, CA125, CA199, coagulation, and other serological indexes of the two groups, and established an optimal model to predict whether or not the patients had endometriosis through artificial intelligence algorithms, with a view to providing new ideas for clinical diagnosis and treatment of endometriosis.Results: Random forests were found to be more advantageous than decision trees, logitboost, artificial neural networks, plain Bayes, support vector machines, and linear regression by machine learning methods. By random forest algorithm modeling, ca125combined with NLR predicted endometriosis better than ca125 alone. ca125combined with NLR predicted endometriosis with 78. 16% accuracy, 86.21%sensitivity, and 0.85 AUC(P<0.05).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助123asd采纳,获得10
1秒前
星辰大海应助123asd采纳,获得10
1秒前
1秒前
1秒前
Tohka完成签到 ,获得积分10
2秒前
科研通AI6应助dzh采纳,获得10
2秒前
一颗松应助马雪滢采纳,获得10
2秒前
2秒前
123别认出我完成签到,获得积分10
3秒前
义气的断秋完成签到,获得积分10
4秒前
4秒前
Red完成签到,获得积分10
5秒前
夏xx完成签到 ,获得积分10
6秒前
小一完成签到,获得积分10
6秒前
livo发布了新的文献求助10
6秒前
emeqwq发布了新的文献求助10
7秒前
Red发布了新的文献求助10
9秒前
Syun完成签到,获得积分10
10秒前
美丽的冰枫完成签到,获得积分10
11秒前
12秒前
科研通AI5应助归尘采纳,获得10
13秒前
emeqwq完成签到,获得积分10
13秒前
yy不是m完成签到,获得积分10
13秒前
无花果应助找找采纳,获得10
13秒前
124完成签到,获得积分10
14秒前
15秒前
Fe_001完成签到 ,获得积分10
16秒前
清脆以旋发布了新的文献求助10
16秒前
阔达白凡完成签到,获得积分10
16秒前
科研通AI6应助秦屿采纳,获得10
17秒前
刘玉凡发布了新的文献求助10
17秒前
livo完成签到,获得积分10
19秒前
Zjjj0812完成签到 ,获得积分10
20秒前
ghroth完成签到,获得积分10
21秒前
八嘎发布了新的文献求助10
21秒前
22秒前
Owen应助唠叨的冥王星采纳,获得10
29秒前
归尘发布了新的文献求助10
29秒前
ranranhihi完成签到,获得积分10
31秒前
32秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5130554
求助须知:如何正确求助?哪些是违规求助? 4332648
关于积分的说明 13498156
捐赠科研通 4169169
什么是DOI,文献DOI怎么找? 2285499
邀请新用户注册赠送积分活动 1286489
关于科研通互助平台的介绍 1227430