多光谱图像
融合
遥感
多光谱模式识别
传感器融合
计算机科学
人工智能
计算机视觉
图像融合
地质学
图像(数学)
语言学
哲学
作者
Jiacheng Li,Bin Gao,Wai Lok Woo,Jieyi Xu,Lei Liu,Yu Zeng
出处
期刊:IEEE Transactions on Instrumentation and Measurement
[Institute of Electrical and Electronics Engineers]
日期:2023-12-19
卷期号:73: 1-13
被引量:9
标识
DOI:10.1109/tim.2023.3344145
摘要
This article introduces a new imaging approach to nondestructive defect detection by combining visual testing (VT) and infrared thermal testing (IRT) in a multispectral vision sensing fusion system. The goal is to overcome the hampering challenges faced by traditional imaging methods, including complex environments, irregular samples, various defect types, and the need for efficient detection. The proposed system simultaneously detects and classifies surface and subsurface defects, addressing issues, such as false detection due to changes in surface emissivity in IRT and the inability to detect subsurface defects in VT. A novel multispectral fusion defect detection framework is proposed, employing coarse-to-fine multispectral registration for accurate alignment of infrared and visible images with different resolutions and fields of view. Domain adaptation unifies the feature domains of infrared and visible images by replacing the phase components in the frequency domain. The framework utilizes the complementary information from infrared and visible modalities to enhance detection accuracy and robustness. Experimental validation is conducted on different specimens, confirming the effectiveness of the proposed framework in detecting and generalizing to various shapes and materials. Overall, this article presents a novel imaging system that combines VT and IRT, offering improved detection capabilities in complex environments and diverse defect scenarios. The demo code is available at: https://github.com/ljcuestc/YoloMultispectralFusion-Coarse-to-fine-Registration.gi .
科研通智能强力驱动
Strongly Powered by AbleSci AI