A Novel Multispectral Fusion Defect Detection Framework With Coarse-to-Fine Multispectral Registration

多光谱图像 融合 遥感 多光谱模式识别 传感器融合 计算机科学 人工智能 计算机视觉 图像融合 地质学 图像(数学) 语言学 哲学
作者
Jiacheng Li,Bin Gao,Wai Lok Woo,Jieyi Xu,Lei Liu,Yu Zeng
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-13 被引量:9
标识
DOI:10.1109/tim.2023.3344145
摘要

This article introduces a new imaging approach to nondestructive defect detection by combining visual testing (VT) and infrared thermal testing (IRT) in a multispectral vision sensing fusion system. The goal is to overcome the hampering challenges faced by traditional imaging methods, including complex environments, irregular samples, various defect types, and the need for efficient detection. The proposed system simultaneously detects and classifies surface and subsurface defects, addressing issues, such as false detection due to changes in surface emissivity in IRT and the inability to detect subsurface defects in VT. A novel multispectral fusion defect detection framework is proposed, employing coarse-to-fine multispectral registration for accurate alignment of infrared and visible images with different resolutions and fields of view. Domain adaptation unifies the feature domains of infrared and visible images by replacing the phase components in the frequency domain. The framework utilizes the complementary information from infrared and visible modalities to enhance detection accuracy and robustness. Experimental validation is conducted on different specimens, confirming the effectiveness of the proposed framework in detecting and generalizing to various shapes and materials. Overall, this article presents a novel imaging system that combines VT and IRT, offering improved detection capabilities in complex environments and diverse defect scenarios. The demo code is available at: https://github.com/ljcuestc/YoloMultispectralFusion-Coarse-to-fine-Registration.gi .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
我是老大应助不爱胡萝卜采纳,获得20
2秒前
2秒前
谷中青发布了新的文献求助10
2秒前
kls发布了新的文献求助10
3秒前
初见完成签到 ,获得积分10
3秒前
温暖的碧彤完成签到,获得积分20
3秒前
领导范儿应助椰子树采纳,获得10
3秒前
颜夕完成签到,获得积分20
3秒前
danney发布了新的文献求助10
3秒前
跳跃的含蕾完成签到 ,获得积分20
4秒前
xjcy应助科研通管家采纳,获得10
4秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
Hello应助科研通管家采纳,获得10
4秒前
酷波er应助科研通管家采纳,获得30
4秒前
今后应助科研通管家采纳,获得10
4秒前
orixero应助科研通管家采纳,获得10
4秒前
畅快访旋应助科研通管家采纳,获得10
4秒前
劲秉应助科研通管家采纳,获得30
4秒前
研友_VZG7GZ应助科研通管家采纳,获得10
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
爆米花应助科研通管家采纳,获得10
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
Akim应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
清爽海露发布了新的文献求助30
5秒前
科研小白发布了新的文献求助10
5秒前
多发paper啊完成签到,获得积分10
5秒前
杨自强发布了新的文献求助10
5秒前
5秒前
abcd1234发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
6秒前
高分求助中
Medicina di laboratorio. Logica e patologia clinica 600
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
Women in Power in Post-Communist Parliaments 450
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3217557
求助须知:如何正确求助?哪些是违规求助? 2866772
关于积分的说明 8153476
捐赠科研通 2533694
什么是DOI,文献DOI怎么找? 1366407
科研通“疑难数据库(出版商)”最低求助积分说明 644764
邀请新用户注册赠送积分活动 617731