水合物
水溶液
化学
无机化学
笼状水合物
成核
水溶液中的金属离子
金属
氢键
分子
物理化学
有机化学
作者
Faping Liu,Airong Li,Cheng Wang,Yuling Ma
摘要
Abstract CO 2 hydrate technology can be applied to seawater desalination. However, the kinetics of CO 2 hydrate formation were inhibited in the aqueous solution with inorganic salts, and the kinetic mechanism of CO 2 hydrate formation for inorganic salts with different metal cations and anions was still unclear. In this work, CO 2 hydrate nucleation and growth were studied in aqueous solutions of metal chlorides. Instead of Na + and K + ions, CO 2 hydrate nucleation was promoted in the presence of Ni 2+ , Mn 2+ , Zn 2+ and Fe 3+ ions due to the co‐ordination bonds between transition metal ions and water molecules to enhance the formation of the critical crystal nuclei. The induction time was increased by 61.1% in aqueous solution with 0.32 mol/L NaCl, while it was shortened by 55.6% in FeCl 3 aqueous solution at the same concentration of Cl − anions. In the process of CO 2 hydrate growth, Cl − ions played a more important role than the metal ions in affecting the stability of CO 2 hydrate cages. The gas storage capacity was reduced by 10.3% in the presence of NaCl, and was lower than that of other metal chlorides. Cl − anions were absorbed on the hydrate surface and involved in hydrate cages to inhibit the hydrate growth due to the hydrogen bonds between the Cl − ions and water molecules of the hydrate cages. © 2024 Society of Chemical Industry and John Wiley & Sons, Ltd.
科研通智能强力驱动
Strongly Powered by AbleSci AI