异质结
光催化
吸附
材料科学
化学工程
载流子
碳纤维
光化学
化学
催化作用
物理化学
有机化学
光电子学
复合数
工程类
复合材料
作者
Yunpeng Liu,Ren Zou,Zhongxin Chen,Wenguang Tu,Ruidong Xia,Emmanuel I. Iwuoha,Xinwen Peng
标识
DOI:10.1021/acscatal.3c03983
摘要
Solar-driven reduction of CO2 to valuable carbon products is an attractive pathway for energy production. The CO2 photoreduction efficiency is determined by the CO2 mass transfer and charge carrier recombination efficiency. Herein, we propose a Bi2WO6–C3N4 heterojunction with the hydrophobic–hydrophilic diphase to promote mass transfer and charge separation. The amphipathic heterojunction achieved high-efficiency photocatalytic conversion of CO2 into CO and CH4 in H2O vapor, yielding up to 25.54 and 7.69 μmol h–1 g–1 of CO and CH4, respectively. The well-designed heterojunction increased the CO2 concentration on the hydrophobic surface and enhanced the H2O adsorption on the hydrophilic surface. Consequently, the reactant gases could be directly fed into the system to consume the photogenerated charges. In situ diffuse reflectance infrared Fourier transform spectroscopy and molecular dynamics simulations elucidated the enhanced activity and reaction mechanism during photocatalysis. The hydrophobic–hydrophilic diphase heterojunction serves as a template for the development of reliable solar-powered systems for CO2 reduction.
科研通智能强力驱动
Strongly Powered by AbleSci AI