DEEPFAKER: A Unified Evaluation Platform for Facial Deepfake and Detection Models

计算机科学 模块化设计 一般化 对抗制 人工智能 数据科学 数学分析 数学 操作系统
作者
Li Wang,Xiangtao Meng,Dan Li,Xuhong Zhang,Shouling Ji,Shanqing Guo
出处
期刊:ACM transactions on privacy and security [Association for Computing Machinery]
卷期号:27 (1): 1-34 被引量:4
标识
DOI:10.1145/3634914
摘要

Deepfake data contains realistically manipulated faces—its abuses pose a huge threat to the security and privacy-critical applications. Intensive research from academia and industry has produced many deepfake/detection models, leading to a constant race of attack and defense. However, due to the lack of a unified evaluation platform, many critical questions on this subject remain largely unexplored. How is the anti-detection ability of the existing deepfake models? How generalizable are existing detection models against different deepfake samples? How effective are the detection APIs provided by the cloud-based vendors? How evasive and transferable are adversarial deepfakes in the lab and real-world environment? How do various factors impact the performance of deepfake and detection models? To bridge the gap, we design and implement DEEPFAKER 1 a unified and comprehensive deepfake detection evaluation platform. Specifically, DEEPFAKER has integrated 10 state-of-the-art deepfake methods and 9 representative detection methods, while providing a user-friendly interface and modular design that allows for easy integration of new methods. Leveraging DEEPFAKER , we conduct a large-scale empirical study of facial deepfake/detection models and draw a set of key findings: (i) the detection methods have poor generalization on samples generated by different deepfake methods; (ii) there is no significant correlation between anti-detection ability and visual quality of deepfake samples; (iii) the current detection APIs have poor detection performance and adversarial deepfakes can achieve about 70% attack success rate on all cloud-based vendors, calling for an urgent need to deploy effective and robust detection APIs; (iv) the detection methods in the lab are more robust against transfer attacks than the detection APIs in the real-world environment; and (v) deepfake videos may not always be more difficult to detect after video compression. We envision that DEEPFAKER will benefit future research on facial deepfake and detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zjl发布了新的文献求助10
1秒前
Zozo完成签到,获得积分10
1秒前
1秒前
zh发布了新的文献求助10
2秒前
DDS发布了新的文献求助10
2秒前
善良的绮琴完成签到 ,获得积分10
2秒前
2秒前
3秒前
orixero应助RossYang采纳,获得10
3秒前
smile发布了新的文献求助10
4秒前
5秒前
5秒前
尤尢发布了新的文献求助100
5秒前
顾己发布了新的文献求助10
6秒前
深情安青应助hxyang采纳,获得10
6秒前
樟脑丸发布了新的文献求助10
6秒前
真洋子哈发布了新的文献求助10
7秒前
露露发布了新的文献求助10
8秒前
我不爱池鱼应助summ采纳,获得10
8秒前
齐天大圣完成签到,获得积分10
8秒前
求求各位大哥救救小弟我吧完成签到,获得积分10
9秒前
小西完成签到,获得积分10
9秒前
咩咩完成签到,获得积分10
9秒前
秋裤哟完成签到,获得积分10
9秒前
MM完成签到,获得积分10
9秒前
跳跳发布了新的文献求助10
9秒前
9秒前
昵称完成签到,获得积分20
10秒前
10秒前
小马甲应助cc采纳,获得10
11秒前
11秒前
怕黑的凛发布了新的文献求助20
11秒前
12秒前
12秒前
上官若男应助困倦南瓜采纳,获得10
12秒前
Tjn完成签到,获得积分10
12秒前
Penny完成签到 ,获得积分10
13秒前
稳重的雨珍应助元yuan采纳,获得30
13秒前
安仔完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
The Laschia-complex (Basidiomycetes) 600
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3540203
求助须知:如何正确求助?哪些是违规求助? 3117698
关于积分的说明 9332009
捐赠科研通 2815417
什么是DOI,文献DOI怎么找? 1547572
邀请新用户注册赠送积分活动 721047
科研通“疑难数据库(出版商)”最低求助积分说明 712419