EaLDL: Element-Aware Lifelong Dictionary Learning for Multimode Process Monitoring

计算机科学 过程(计算) 代表(政治) 再培训 约束(计算机辅助设计) 人工智能 多模光纤 机器学习 工业工程 工程类 操作系统 业务 政治 国际贸易 光纤 法学 机械工程 电信 政治学
作者
Keke Huang,Hengxing Zhu,Dehao Wu,Chunhua Yang,Weihua Gui
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:11
标识
DOI:10.1109/tnnls.2023.3343937
摘要

With the rapid development of modern industry and the increasing prominence of artificial intelligence, data-driven process monitoring methods have gained significant popularity in industrial systems. Traditional static monitoring models struggle to represent the new modes that arise in industrial production processes due to changes in production environments and operating conditions. Retraining these models to address the changes often leads to high computational complexity. To address this issue, we propose a multimode process monitoring method based on element-aware lifelong dictionary learning (EaLDL). This method initially treats dictionary elements as fundamental units and measures the global importance of dictionary elements from the perspective of the multimode global learning process. Subsequently, to ensure that the dictionary can represent new modes without losing the representation capability of historical modes during the updating process, we construct a novel surrogate loss to impose constraints on the update of dictionary elements. This constraint enables the continuous updating of the dictionary learning (DL) method to accommodate new modes without compromising the representation of previous modes. Finally, to evaluate the effectiveness of the proposed method, we perform comprehensive experiments on numerical simulations as well as an industrial process. A comparison is made with several advanced process monitoring methods to assess its performance. Experimental results demonstrate that our proposed method achieves a favorable balance between learning new modes and retaining the memory of historical modes. Moreover, the proposed method exhibits insensitivity to initial points, delivering satisfactory results under various initial conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ronnie完成签到,获得积分10
1秒前
1秒前
碧蓝丹烟完成签到 ,获得积分10
2秒前
2秒前
2秒前
爱听歌的从筠完成签到,获得积分20
3秒前
spenley完成签到,获得积分10
3秒前
小二郎应助niekyang采纳,获得10
3秒前
ding应助AlwaysKim采纳,获得10
5秒前
杨冰完成签到,获得积分10
5秒前
Metx完成签到 ,获得积分10
5秒前
善学以致用应助Hiker采纳,获得10
6秒前
Leo完成签到,获得积分20
6秒前
Mr朱发布了新的文献求助10
6秒前
6秒前
kunkun发布了新的文献求助10
7秒前
烟花应助bxg采纳,获得10
7秒前
丫丫发布了新的文献求助10
8秒前
一独白完成签到 ,获得积分10
9秒前
9秒前
11秒前
GOD伟完成签到,获得积分10
12秒前
识途完成签到 ,获得积分10
12秒前
充电宝应助典雅的蜡烛采纳,获得10
13秒前
13秒前
LTY完成签到,获得积分10
13秒前
小铭的男仆完成签到,获得积分20
13秒前
热心的冷松完成签到,获得积分10
14秒前
勤奋的花前茶完成签到,获得积分10
15秒前
大尾巴白完成签到,获得积分10
15秒前
15秒前
15秒前
qq发布了新的文献求助10
16秒前
17秒前
蝈蝈完成签到,获得积分10
18秒前
cmq完成签到 ,获得积分10
18秒前
李健应助¥#¥-11采纳,获得10
19秒前
骤雨时晴完成签到 ,获得积分10
19秒前
19秒前
高分求助中
Comparative Anatomy of the Vertebrates 9th 3000
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3571929
求助须知:如何正确求助?哪些是违规求助? 3142327
关于积分的说明 9446826
捐赠科研通 2843700
什么是DOI,文献DOI怎么找? 1563001
邀请新用户注册赠送积分活动 731530
科研通“疑难数据库(出版商)”最低求助积分说明 718557