Protective effects of mitochondrial genome abundance on Alzheimer’s Disease: a Mendelian randomization study

痴呆 孟德尔随机化 全基因组关联研究 混淆 医学 神经病理学 遗传学 生物 生物信息学 疾病 单核苷酸多态性 内科学 基因型 基因 遗传变异
作者
Brian D Alvarez,Carmen Romero Molina,Heather Wilkins,Judy Pa,Russell H. Swerdlow,Alison Goate,Shea J. Andrews
出处
期刊:Alzheimers & Dementia [Wiley]
卷期号:19 (S24) 被引量:2
标识
DOI:10.1002/alz.083132
摘要

Abstract Background Mitochondrial DNA copy number (mtDNAcn) is a surrogate measure of mitochondrial function that is associated with higher cognitive performance and reduced risk of AD neuropathology. Here, we use two‐sample Mendelian randomization (MR) to estimate the causal association of blood‐based mtDNAcn on AD/dementia while controlling for latent confounders, sample overlap, and testing bidirectional effects. Method GWAS Summary statistics of mtDNAcn were procured from three separate studies using various bioinformatic methods to estimate mtDNAcn; microarray, whole exome sequencing (WES), and whole genome sequencing (WGS) datasets using the UK Biobank (UKBB) and Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium. Longchamps et al., 2021. uses quantitative PCR (CHARGE) and WES, WGS (UKBB). Hagg et al., 2021 use microarray approximation, as well as WGS and qPCR. Chong et al., 2022 employ the novel AutoMitoC in addition to WES data (UKBB). Kunkle et al., 2019 employed late‐onset clinical AD cases/controls (n = 94,437), and Bellenguez et al., 2022 (n = 487,511) used AD/dementia from clinical and proxy cases/controls. MR estimates the causal association between mtDNAcn and AD and AD/dementia using IVW analysis, and MR Egger, Weighted Mode, and Weighted Median as sensitivity analysis. Latent Heritable Confounder‐MR (LHC‐MR) was used to investigate bidirectional effects in the presence of sample overlap between the mtDNAcn datasets and AD/Dementia. Result There were no significant causal associations of mtDNAcn on AD or AD/dementia using univariate MR analysis. However, using LHC‐MR, higher genetically predicted mtDNAcn was causally associated with AD/dementia using all three mtDNAcn datasets (OR [95%CI]: Chong = 0.84 [0.78, 0.90], p < 0.001; Longchamps = 0.89 [0.82, 0.96], p = 0.003; Hagg = 0.84 [0.78, 0.91], p < 0.001). In the reverse direction, genetic liability for AD/dementia was causally associated with higher mtDNAcn levels (β [SE]: 0.10 [0.05], p = 0.017). Conclusion Higher blood‐based mtDNAcn was causally associated with reduced risk of AD, with limited evidence to suggest a bidirectional effect. Discrepancies between univariate MR results and LHC‐MR may be explained by the increased power and the inclusion of a latent confounder.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
落落完成签到,获得积分10
1秒前
1秒前
Tzzl0226发布了新的文献求助10
2秒前
3秒前
竹筏过海应助Autin采纳,获得100
4秒前
dalong完成签到,获得积分10
6秒前
wanci应助王红玉采纳,获得10
6秒前
Owen应助楼下太吵了采纳,获得10
8秒前
8秒前
XIA发布了新的文献求助10
8秒前
9秒前
9秒前
玩的时候认真玩应助iros采纳,获得20
10秒前
兴奋冷松完成签到,获得积分10
10秒前
runrun完成签到,获得积分10
10秒前
yijian完成签到,获得积分10
11秒前
12秒前
怪胎完成签到,获得积分10
12秒前
任性凤凰发布了新的文献求助10
13秒前
rive发布了新的文献求助10
14秒前
赘婿应助一只猪采纳,获得10
14秒前
14秒前
旱田蜗牛发布了新的文献求助10
14秒前
哈哈发布了新的文献求助10
16秒前
王俊涵发布了新的文献求助30
17秒前
Tzzl0226发布了新的文献求助10
17秒前
18秒前
zhanghl发布了新的文献求助10
18秒前
cdhuang完成签到,获得积分10
19秒前
19秒前
20秒前
carl完成签到 ,获得积分10
20秒前
阿涂发布了新的文献求助10
22秒前
22秒前
路洛米完成签到,获得积分10
22秒前
23秒前
ZMT完成签到,获得积分10
23秒前
23秒前
luke发布了新的文献求助10
24秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4923236
求助须知:如何正确求助?哪些是违规求助? 4193683
关于积分的说明 13025807
捐赠科研通 3965586
什么是DOI,文献DOI怎么找? 2173403
邀请新用户注册赠送积分活动 1190992
关于科研通互助平台的介绍 1100532