Calibration of Heterogeneous Treatment Effects in Randomized Experiments

计算机科学 随机试验 校准 正规化(语言学) 机器学习 比例(比率) 数据挖掘 人工智能 计量经济学 统计 数学 物理 量子力学
作者
Yan Leng,Drew Dimmery
出处
期刊:Information Systems Research [Institute for Operations Research and the Management Sciences]
卷期号:35 (4): 1721-1742 被引量:5
标识
DOI:10.1287/isre.2021.0343
摘要

Machine learning is commonly used to estimate the heterogeneous treatment effects (HTEs) in randomized experiments. Using large-scale randomized experiments on Facebook and Criteo platforms, we observe substantial discrepancies between machine learning-based treatment effect estimates and difference-in-means estimates directly from the randomized experiment. This paper provides a two-step framework for practitioners and researchers to diagnose and rectify this discrepancy. We first introduce a diagnostic tool to assess whether bias exists in the model-based estimates from machine learning. If bias exists, we then offer a model-agnostic method to calibrate any HTE estimates to known, unbiased, subgroup difference-in-means estimates, ensuring that the sign and magnitude of the subgroup estimates approximate the model-free benchmarks. This calibration method requires no additional data and can be scaled for large data sets. To highlight potential sources of bias, we theoretically show that this bias can result from regularization, and further use synthetic simulation to show biases result from misspecification and high-dimensional features. We demonstrate the efficacy of our calibration method using extensive synthetic simulations and two real-world randomized experiments. We further demonstrate the practical value of this calibration in three typical policy-making settings: a prescriptive, budget-constrained optimization framework; a setting seeking to maximize multiple performance indicators; and a multitreatment uplift modeling setting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
woyaojiayou完成签到,获得积分10
1秒前
LongY发布了新的文献求助10
2秒前
2秒前
Akim应助Wzx采纳,获得10
2秒前
CCCCCC发布了新的文献求助10
2秒前
2秒前
Carsen完成签到,获得积分10
2秒前
SciGPT应助Romine采纳,获得10
2秒前
隐形曼青应助謓言采纳,获得10
2秒前
情殇发布了新的文献求助10
3秒前
Hyunstar完成签到,获得积分10
3秒前
郜连虎发布了新的文献求助10
4秒前
4秒前
赵小瑜完成签到,获得积分10
4秒前
难过盼海发布了新的文献求助10
5秒前
5秒前
Ruan_zzz完成签到 ,获得积分10
6秒前
落寞依珊发布了新的文献求助10
6秒前
ghjyufh发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
希望天下0贩的0应助Amelia采纳,获得10
8秒前
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
福尔摩环完成签到,获得积分10
10秒前
10秒前
JasonYang完成签到,获得积分10
11秒前
11秒前
辛禹完成签到,获得积分10
12秒前
12秒前
Shadow发布了新的文献求助10
12秒前
12秒前
13秒前
Wzx完成签到,获得积分10
13秒前
13秒前
科研误我完成签到 ,获得积分10
13秒前
998685完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545599
求助须知:如何正确求助?哪些是违规求助? 4631588
关于积分的说明 14621327
捐赠科研通 4573203
什么是DOI,文献DOI怎么找? 2507433
邀请新用户注册赠送积分活动 1484163
关于科研通互助平台的介绍 1455416