Calibration of Heterogeneous Treatment Effects in Randomized Experiments

计算机科学 随机试验 校准 正规化(语言学) 机器学习 比例(比率) 数据挖掘 人工智能 计量经济学 统计 数学 物理 量子力学
作者
Yan Leng,Drew Dimmery
出处
期刊:Information Systems Research [Institute for Operations Research and the Management Sciences]
卷期号:35 (4): 1721-1742 被引量:3
标识
DOI:10.1287/isre.2021.0343
摘要

Machine learning is commonly used to estimate the heterogeneous treatment effects (HTEs) in randomized experiments. Using large-scale randomized experiments on Facebook and Criteo platforms, we observe substantial discrepancies between machine learning-based treatment effect estimates and difference-in-means estimates directly from the randomized experiment. This paper provides a two-step framework for practitioners and researchers to diagnose and rectify this discrepancy. We first introduce a diagnostic tool to assess whether bias exists in the model-based estimates from machine learning. If bias exists, we then offer a model-agnostic method to calibrate any HTE estimates to known, unbiased, subgroup difference-in-means estimates, ensuring that the sign and magnitude of the subgroup estimates approximate the model-free benchmarks. This calibration method requires no additional data and can be scaled for large data sets. To highlight potential sources of bias, we theoretically show that this bias can result from regularization, and further use synthetic simulation to show biases result from misspecification and high-dimensional features. We demonstrate the efficacy of our calibration method using extensive synthetic simulations and two real-world randomized experiments. We further demonstrate the practical value of this calibration in three typical policy-making settings: a prescriptive, budget-constrained optimization framework; a setting seeking to maximize multiple performance indicators; and a multitreatment uplift modeling setting.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
XIA发布了新的文献求助20
1秒前
1秒前
英俊柠檬发布了新的文献求助10
1秒前
1秒前
lyy完成签到,获得积分10
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
3秒前
慕青应助echoyao采纳,获得10
3秒前
lcx发布了新的文献求助10
4秒前
Akim应助qing1245采纳,获得10
4秒前
大个应助轻松不二采纳,获得10
4秒前
ccc发布了新的文献求助10
4秒前
4秒前
华123完成签到,获得积分20
5秒前
chopin完成签到,获得积分10
5秒前
风之晨曦发布了新的文献求助10
6秒前
6秒前
爆米花应助momucy采纳,获得10
6秒前
小鱼呆呆脑完成签到,获得积分10
6秒前
zjw应助Zn采纳,获得10
6秒前
Ava应助拾光采纳,获得10
6秒前
7秒前
7秒前
利多卡因完成签到,获得积分10
7秒前
领导范儿应助程昱采纳,获得10
7秒前
田様应助西瓜采纳,获得10
8秒前
8秒前
Fareth发布了新的文献求助10
8秒前
8秒前
8秒前
leranlily完成签到,获得积分10
8秒前
科研通AI6应助zhaohuanjun采纳,获得10
9秒前
10秒前
华123发布了新的文献求助10
10秒前
10秒前
勤恳的雅青完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4576354
求助须知:如何正确求助?哪些是违规求助? 3995613
关于积分的说明 12369373
捐赠科研通 3669547
什么是DOI,文献DOI怎么找? 2022294
邀请新用户注册赠送积分活动 1056342
科研通“疑难数据库(出版商)”最低求助积分说明 943562