Calibration of Heterogeneous Treatment Effects in Randomized Experiments

计算机科学 随机试验 校准 正规化(语言学) 机器学习 比例(比率) 数据挖掘 人工智能 计量经济学 统计 数学 物理 量子力学
作者
Yan Leng,Drew Dimmery
出处
期刊:Information Systems Research [Institute for Operations Research and the Management Sciences]
卷期号:35 (4): 1721-1742 被引量:3
标识
DOI:10.1287/isre.2021.0343
摘要

Machine learning is commonly used to estimate the heterogeneous treatment effects (HTEs) in randomized experiments. Using large-scale randomized experiments on Facebook and Criteo platforms, we observe substantial discrepancies between machine learning-based treatment effect estimates and difference-in-means estimates directly from the randomized experiment. This paper provides a two-step framework for practitioners and researchers to diagnose and rectify this discrepancy. We first introduce a diagnostic tool to assess whether bias exists in the model-based estimates from machine learning. If bias exists, we then offer a model-agnostic method to calibrate any HTE estimates to known, unbiased, subgroup difference-in-means estimates, ensuring that the sign and magnitude of the subgroup estimates approximate the model-free benchmarks. This calibration method requires no additional data and can be scaled for large data sets. To highlight potential sources of bias, we theoretically show that this bias can result from regularization, and further use synthetic simulation to show biases result from misspecification and high-dimensional features. We demonstrate the efficacy of our calibration method using extensive synthetic simulations and two real-world randomized experiments. We further demonstrate the practical value of this calibration in three typical policy-making settings: a prescriptive, budget-constrained optimization framework; a setting seeking to maximize multiple performance indicators; and a multitreatment uplift modeling setting.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
玫玫发布了新的文献求助10
刚刚
pluto完成签到,获得积分0
1秒前
nature预备军完成签到 ,获得积分10
1秒前
cailiaokexue完成签到,获得积分10
2秒前
小乔发布了新的文献求助10
3秒前
娜娜子完成签到 ,获得积分10
4秒前
liyanglin发布了新的文献求助20
4秒前
刘肖完成签到,获得积分10
6秒前
阿景完成签到 ,获得积分10
8秒前
1+1应助科研通管家采纳,获得10
8秒前
实验好难应助科研通管家采纳,获得10
8秒前
劲秉应助科研通管家采纳,获得10
8秒前
lijianguo应助科研通管家采纳,获得10
8秒前
胡萝卜应助科研通管家采纳,获得20
9秒前
酷波er应助科研通管家采纳,获得10
9秒前
xsxx应助科研通管家采纳,获得10
9秒前
实验好难应助科研通管家采纳,获得10
9秒前
深情安青应助科研通管家采纳,获得10
9秒前
迟大猫应助科研通管家采纳,获得10
9秒前
nozero应助科研通管家采纳,获得30
9秒前
Orange应助科研通管家采纳,获得10
9秒前
乐乐应助科研通管家采纳,获得10
9秒前
李健应助科研通管家采纳,获得10
9秒前
zhangyidian应助科研通管家采纳,获得10
9秒前
1+1应助科研通管家采纳,获得10
9秒前
nozero应助科研通管家采纳,获得30
10秒前
CodeCraft应助科研通管家采纳,获得30
10秒前
领导范儿应助科研通管家采纳,获得10
10秒前
FashionBoy应助科研通管家采纳,获得10
10秒前
oooh应助科研通管家采纳,获得50
10秒前
nozero应助科研通管家采纳,获得30
10秒前
10秒前
迟大猫应助科研通管家采纳,获得10
10秒前
实验好难应助科研通管家采纳,获得10
10秒前
迟大猫应助科研通管家采纳,获得10
10秒前
pluto应助科研通管家采纳,获得10
10秒前
nozero应助科研通管家采纳,获得30
10秒前
隐形曼青应助科研通管家采纳,获得10
11秒前
迟大猫应助科研通管家采纳,获得10
11秒前
劲秉应助科研通管家采纳,获得30
11秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671635
求助须知:如何正确求助?哪些是违规求助? 3228335
关于积分的说明 9779690
捐赠科研通 2938645
什么是DOI,文献DOI怎么找? 1610206
邀请新用户注册赠送积分活动 760547
科研通“疑难数据库(出版商)”最低求助积分说明 736093