Trend, seasonality, and abrupt change detection method for land surface temperature time-series analysis: Evaluation and improvement

季节性 遥感 时间序列 系列(地层学) 变更检测 环境科学 气象学 气候学 统计 地理 地质学 数学 古生物学
作者
Jing Li,Zhao-Liang Li,Hua Wu,Nanshan You
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:280: 113222-113222 被引量:44
标识
DOI:10.1016/j.rse.2022.113222
摘要

Long-term land surface temperature (LST) variation is vital for the study of climate change and environmental monitoring. Change detection methods provide access to recovery trajectories of trend and seasonality and detect abrupt changes in LST time series, but a comprehensive evaluation of the published methods is lacking. In this study, simulated LST data with a temporal resolution of 8 days under different scenarios were used to evaluate the performance of three commonly used methods: Detecting Breakpoints and Estimating Segments in Trend (DBEST), Breaks for Additive Seasonal and Trend (BFAST), and Bayesian Estimator of Abrupt change, Seasonal change, and Trend (BEAST). The results obtained using the simulated data indicated that BEAST was the best method for decomposing LST time series into trend and seasonality (mean RMSEs were 0.28 K and 0.27 K, respectively) and for detecting abrupt changes in these two components (mean F1 scores were 0.83 and 0.95, respectively). BFAST was less robust to high-complexity data (F1: 0.56 and 0.52, RMSE: 1.34 K and 1.46 K). 0.91 K and 1.29 K). DBEST is recommended to capture component details because it yields the least generalized output (F1 for trend: 0.37, RMSE: 0.64 K and 1.37 K). Both BFAST and DBEST exhibited reduced accuracy when the time-series data has long-lasting continuous missing data. An application using the 20-year MODIS LST time series supports the results obtained using the simulated data. BEAST exhibited the highest detection accuracy for land cover change (13 correct detections among 15 true changes), followed by DBEST (9) and BFAST (7). All three methods were ineffective for detecting low-magnitude disturbances: wildfires, heatwaves, and cold spells due to their low intensity or short duration. To reduce the non-negligible commission error of BEAST, this study proposes an improved BEAST, which eliminates the false breakpoints in BEAST using a set of thresholds. Compared with BEAST, the user accuracy of the improved BEAST was significantly increased by 13.9% in the simulated data, resulting in an F1 increase of 0.04, and 15 false breakpoints were eliminated among 53 detected disturbances in the MODIS LST time series. This study outlines commonly used change detection methods and offers guidance for choosing the optimal method to detect changes in LST time series. Furthermore, suggestions on the determination of parameters and false breakpoints elimination in the improved BEAST enable it more practical. • Three methods (i.e., DBEST, BFAST, BEAST) were evaluated for detecting LST changes. • BEAST performed best in detecting abrupt changes in LST time series. • BEAST accurately decomposed LST time series into trend and seasonality. • BEAST is practical in detecting land cover changes using LST time series. • The improved BEAST could significantly reduce the number of false breakpoints.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cykeat完成签到 ,获得积分10
刚刚
洁净香氛完成签到,获得积分20
刚刚
shinysparrow完成签到,获得积分0
刚刚
1秒前
独孤阳光完成签到,获得积分10
1秒前
Tao完成签到 ,获得积分10
2秒前
酷酷的初晴完成签到 ,获得积分10
3秒前
玩命的绾绾完成签到 ,获得积分10
5秒前
默默的璎完成签到,获得积分10
7秒前
pluto应助完美的海秋采纳,获得10
9秒前
12秒前
Owen应助适可而止采纳,获得10
14秒前
14秒前
shanekhost完成签到 ,获得积分10
15秒前
mujianhua发布了新的文献求助10
17秒前
科研通AI2S应助afeiwoo采纳,获得10
18秒前
xwl9955完成签到 ,获得积分10
18秒前
winnie发布了新的文献求助10
19秒前
28秒前
柳叶刀小猪应助明亮映阳采纳,获得10
29秒前
吴先生发布了新的文献求助10
30秒前
30秒前
彩色不评完成签到,获得积分10
36秒前
37秒前
科研通AI2S应助juckblack采纳,获得10
37秒前
彭于晏应助juckblack采纳,获得30
37秒前
tsuki完成签到 ,获得积分10
38秒前
科研通AI2S应助完美的海秋采纳,获得10
39秒前
桐桐应助Li采纳,获得10
39秒前
39秒前
winnie完成签到,获得积分10
40秒前
愉快的千风完成签到,获得积分10
40秒前
43秒前
大爆炸鱼完成签到 ,获得积分10
44秒前
Vaying发布了新的文献求助10
45秒前
46秒前
46秒前
49秒前
49秒前
zzz发布了新的文献求助10
49秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Security Awareness: Applying Practical Cybersecurity in Your World 6th Edition 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3240927
求助须知:如何正确求助?哪些是违规求助? 2885681
关于积分的说明 8239625
捐赠科研通 2554099
什么是DOI,文献DOI怎么找? 1382270
科研通“疑难数据库(出版商)”最低求助积分说明 649471
邀请新用户注册赠送积分活动 625109