A Deep Gaussian Process Approach for Predictive Maintenance

高斯过程 预测性维护 计算机科学 核(代数) 机器学习 过程(计算) 差异(会计) 缩小 人工智能 特征(语言学) 高斯分布 可靠性工程 数据挖掘 工程类 数学 物理 业务 会计 量子力学 组合数学 程序设计语言 操作系统 语言学 哲学
作者
Junqi Zeng,Zhenglin Liang
出处
期刊:IEEE Transactions on Reliability [Institute of Electrical and Electronics Engineers]
卷期号:72 (3): 916-933 被引量:2
标识
DOI:10.1109/tr.2022.3199924
摘要

In the era of digitalization, ubiquitous sensing technologies have paved the way for predicting the remaining useful life (RUL) of assets or systems. In both practical and theoretical fields, enabled by machine learning algorithms, predictive maintenance (PdM) has attracted significant attention. Among machine learning algorithms, deep learning benefits from its multilayer architecture for performing feature engineering. It provides high-quality results in an efficient manner and has become a prevalent approach. However, only predicting the expected RUL is insufficient. For practically implementing PdM approaches, both the overestimating and underestimating prediction risks should also be analyzed and mitigated before making maintenance decisions. In this article, we propose a deep Gaussian process approach to predict the expected RUL and estimate the associated variance. The approach adopts the multilayer architecture such that the predicted result is robust against the selection of kernel functions. Several novel evaluation metrics are introduced to evaluate the predicted RUL distribution. To realize a complete framework of PdM, enabled by the RUL distribution, we propose a distribution-based cost minimization algorithm to dynamically optimize the predicted maintenance thresholds. The overall approach is tested with two practical datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ww关注了科研通微信公众号
刚刚
我爱科研完成签到,获得积分10
刚刚
1秒前
如你完成签到,获得积分10
1秒前
1秒前
苹果发布了新的文献求助10
2秒前
2秒前
自由凌丝完成签到,获得积分10
3秒前
诚心冥王星完成签到,获得积分10
3秒前
4秒前
禾风完成签到,获得积分10
4秒前
Cai完成签到 ,获得积分10
4秒前
感动城发布了新的文献求助10
4秒前
Yego完成签到,获得积分10
4秒前
tt发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
wang完成签到,获得积分10
5秒前
SION完成签到,获得积分10
5秒前
平淡南霜完成签到,获得积分10
5秒前
Harden发布了新的文献求助10
5秒前
6秒前
kmelo完成签到,获得积分10
6秒前
传奇3应助michellewu采纳,获得10
6秒前
李雨完成签到,获得积分10
7秒前
桃博完成签到,获得积分10
7秒前
Ludi完成签到,获得积分10
7秒前
晓布衣完成签到,获得积分10
7秒前
yydy发布了新的文献求助10
8秒前
老实的黑米完成签到 ,获得积分10
8秒前
cymxyqf159完成签到,获得积分10
9秒前
仙林AK47完成签到,获得积分10
9秒前
852应助爱吃鱼的猫采纳,获得10
9秒前
cobo完成签到,获得积分10
9秒前
10秒前
十二发布了新的文献求助10
10秒前
zyp3344完成签到,获得积分10
10秒前
科研通AI2S应助xxx采纳,获得10
11秒前
yile完成签到,获得积分10
11秒前
和谐含蕾完成签到,获得积分10
11秒前
zhu哒哒哒完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5651771
求助须知:如何正确求助?哪些是违规求助? 4785921
关于积分的说明 15056130
捐赠科研通 4810446
什么是DOI,文献DOI怎么找? 2573185
邀请新用户注册赠送积分活动 1529071
关于科研通互助平台的介绍 1488014