Identification of key predictors of hospital mortality in critically ill patients with embolic stroke using machine learning

医学 接收机工作特性 格拉斯哥昏迷指数 重症监护室 机器学习 冲程(发动机) 随机森林 特征选择 特征(语言学) 重症监护 人工智能 公制(单位) 急诊医学 队列 重症监护医学 内科学 计算机科学 外科 经济 哲学 工程类 机械工程 语言学 运营管理
作者
Wei Liu,Wei Ma,Na Bai,Chunyan Li,Kuangpin Liu,Jian Yang,Sijia Zhang,Kewei Zhu,Qiang Zhou,Liang Hua,Jianhui Guo,Liyan Li
出处
期刊:Bioscience Reports [Portland Press]
卷期号:42 (9) 被引量:1
标识
DOI:10.1042/bsr20220995
摘要

Embolic stroke (ES) is characterized by high morbidity and mortality. Its mortality predictors remain unclear. The present study aimed to use machine learning (ML) to identify the key predictors of mortality for ES patients in the intensive care unit (ICU). Data were extracted from two large ICU databases: Medical Information Mart for Intensive Care (MIMIC)-IV for training and internal validation, and eICU Collaborative Research Database (eICU-CRD) for external validation. We developed predictive models of ES mortality based on 15 ML algorithms. We relied on the synthetic minority oversampling technique (SMOTE) to address class imbalance. Our main performance metric was area under the receiver operating characteristic (AUROC). We adopted recursive feature elimination (RFE) for feature selection. We assessed model performance using three disease-severity scoring systems as benchmarks. Of the 1566 and 207 ES patients enrolled in the two databases, there were 173 (15.70%), 73 (15.57%), and 36 (17.39%) hospital mortality in the training, internal validation, and external validation cohort, respectively. The random forest (RF) model had the largest AUROC (0.806) in the internal validation phase and was chosen as the best model. The AUROC of the RF compact (RF-COM) model containing the top six features identified by RFE was 0.795. In the external validation phase, the AUROC of the RF model was 0.838, and the RF-COM model was 0.830, outperforming other models. Our findings suggest that the RF model was the best model and the top six predictors of ES hospital mortality were Glasgow Coma Scale, white blood cell, blood urea nitrogen, bicarbonate, age, and mechanical ventilation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
痴情的寒云完成签到 ,获得积分10
刚刚
yoyolulu完成签到,获得积分10
刚刚
Tracy.完成签到,获得积分10
1秒前
1秒前
sharon完成签到,获得积分10
2秒前
刘雅彪完成签到 ,获得积分10
2秒前
寒星苍梧完成签到,获得积分10
2秒前
Ava应助皮灵犀采纳,获得10
2秒前
duoduo完成签到,获得积分10
2秒前
cherish_7宝完成签到,获得积分10
3秒前
qwt_hello发布了新的文献求助30
4秒前
Xl完成签到,获得积分10
4秒前
激动的访文完成签到,获得积分10
5秒前
鲜艳的棒棒糖完成签到,获得积分10
5秒前
谨慎寻冬完成签到,获得积分10
6秒前
eric888应助fangzhang采纳,获得150
6秒前
7秒前
正经大善人完成签到,获得积分10
8秒前
顺心醉蝶完成签到 ,获得积分10
8秒前
实验顺顺利利完成签到,获得积分10
8秒前
rio完成签到,获得积分10
9秒前
Inanopig完成签到,获得积分10
9秒前
丁老三完成签到 ,获得积分10
10秒前
研友_Lpawrn完成签到,获得积分10
10秒前
胖丁完成签到,获得积分10
10秒前
菲菲完成签到 ,获得积分20
11秒前
xxs发布了新的文献求助10
12秒前
12秒前
苗条一兰完成签到,获得积分10
12秒前
白色的风车完成签到,获得积分10
12秒前
小月Anna完成签到,获得积分10
13秒前
13秒前
yg发布了新的文献求助10
14秒前
Hello应助贝加尔湖畔采纳,获得10
15秒前
ma完成签到 ,获得积分10
15秒前
光亮萤发布了新的文献求助10
15秒前
橙汁完成签到,获得积分10
15秒前
哟梦完成签到,获得积分10
16秒前
方百招完成签到,获得积分10
17秒前
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950051
求助须知:如何正确求助?哪些是违规求助? 3495384
关于积分的说明 11076831
捐赠科研通 3225937
什么是DOI,文献DOI怎么找? 1783346
邀请新用户注册赠送积分活动 867640
科研通“疑难数据库(出版商)”最低求助积分说明 800855