医学
接收机工作特性
格拉斯哥昏迷指数
重症监护室
机器学习
冲程(发动机)
随机森林
特征选择
特征(语言学)
重症监护
人工智能
公制(单位)
急诊医学
队列
重症监护医学
内科学
计算机科学
外科
经济
哲学
工程类
机械工程
语言学
运营管理
作者
Wei Liu,Wei Ma,Na Bai,Chunyan Li,Kuangpin Liu,Jian Yang,Sijia Zhang,Kewei Zhu,Qiang Zhou,Liang Hua,Jianhui Guo,Liyan Li
摘要
Embolic stroke (ES) is characterized by high morbidity and mortality. Its mortality predictors remain unclear. The present study aimed to use machine learning (ML) to identify the key predictors of mortality for ES patients in the intensive care unit (ICU). Data were extracted from two large ICU databases: Medical Information Mart for Intensive Care (MIMIC)-IV for training and internal validation, and eICU Collaborative Research Database (eICU-CRD) for external validation. We developed predictive models of ES mortality based on 15 ML algorithms. We relied on the synthetic minority oversampling technique (SMOTE) to address class imbalance. Our main performance metric was area under the receiver operating characteristic (AUROC). We adopted recursive feature elimination (RFE) for feature selection. We assessed model performance using three disease-severity scoring systems as benchmarks. Of the 1566 and 207 ES patients enrolled in the two databases, there were 173 (15.70%), 73 (15.57%), and 36 (17.39%) hospital mortality in the training, internal validation, and external validation cohort, respectively. The random forest (RF) model had the largest AUROC (0.806) in the internal validation phase and was chosen as the best model. The AUROC of the RF compact (RF-COM) model containing the top six features identified by RFE was 0.795. In the external validation phase, the AUROC of the RF model was 0.838, and the RF-COM model was 0.830, outperforming other models. Our findings suggest that the RF model was the best model and the top six predictors of ES hospital mortality were Glasgow Coma Scale, white blood cell, blood urea nitrogen, bicarbonate, age, and mechanical ventilation.
科研通智能强力驱动
Strongly Powered by AbleSci AI