Identification of key predictors of hospital mortality in critically ill patients with embolic stroke using machine learning

医学 接收机工作特性 格拉斯哥昏迷指数 重症监护室 机器学习 冲程(发动机) 随机森林 特征选择 特征(语言学) 重症监护 人工智能 公制(单位) 急诊医学 队列 重症监护医学 内科学 计算机科学 外科 经济 哲学 工程类 机械工程 语言学 运营管理
作者
Wei Liu,Wei Ma,Na Bai,Chunyan Li,Kuangpin Liu,Jian Yang,Sijia Zhang,Kewei Zhu,Qiang Zhou,Liang Hua,Jianhui Guo,Liyan Li
出处
期刊:Bioscience Reports [Portland Press]
卷期号:42 (9) 被引量:1
标识
DOI:10.1042/bsr20220995
摘要

Embolic stroke (ES) is characterized by high morbidity and mortality. Its mortality predictors remain unclear. The present study aimed to use machine learning (ML) to identify the key predictors of mortality for ES patients in the intensive care unit (ICU). Data were extracted from two large ICU databases: Medical Information Mart for Intensive Care (MIMIC)-IV for training and internal validation, and eICU Collaborative Research Database (eICU-CRD) for external validation. We developed predictive models of ES mortality based on 15 ML algorithms. We relied on the synthetic minority oversampling technique (SMOTE) to address class imbalance. Our main performance metric was area under the receiver operating characteristic (AUROC). We adopted recursive feature elimination (RFE) for feature selection. We assessed model performance using three disease-severity scoring systems as benchmarks. Of the 1566 and 207 ES patients enrolled in the two databases, there were 173 (15.70%), 73 (15.57%), and 36 (17.39%) hospital mortality in the training, internal validation, and external validation cohort, respectively. The random forest (RF) model had the largest AUROC (0.806) in the internal validation phase and was chosen as the best model. The AUROC of the RF compact (RF-COM) model containing the top six features identified by RFE was 0.795. In the external validation phase, the AUROC of the RF model was 0.838, and the RF-COM model was 0.830, outperforming other models. Our findings suggest that the RF model was the best model and the top six predictors of ES hospital mortality were Glasgow Coma Scale, white blood cell, blood urea nitrogen, bicarbonate, age, and mechanical ventilation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LOTUS发布了新的文献求助10
1秒前
扎根完成签到,获得积分10
1秒前
柏不斜发布了新的文献求助10
2秒前
coollz完成签到,获得积分20
2秒前
2秒前
3秒前
3秒前
扎根发布了新的文献求助150
4秒前
乐in林发布了新的文献求助10
4秒前
玩命的小虾米完成签到,获得积分10
5秒前
junlin完成签到,获得积分10
6秒前
所所应助surain采纳,获得10
7秒前
AMM发布了新的文献求助10
7秒前
Tian发布了新的文献求助100
9秒前
9秒前
FashionBoy应助聪明海云采纳,获得10
11秒前
666发布了新的文献求助10
14秒前
TCMning发布了新的文献求助10
15秒前
15秒前
四玖玖完成签到,获得积分10
17秒前
酷波er应助xx采纳,获得10
19秒前
海斯泰因发布了新的文献求助10
20秒前
Daisy发布了新的文献求助10
20秒前
害怕的水之完成签到,获得积分10
21秒前
一生低首向东坡完成签到,获得积分20
21秒前
风吹麦田应助ljn采纳,获得50
21秒前
21秒前
深情的鞯发布了新的文献求助10
22秒前
heaven发布了新的文献求助10
22秒前
雨中小王应助懵懂的寻冬采纳,获得10
22秒前
surain完成签到,获得积分10
22秒前
23秒前
李爱国应助xinL采纳,获得10
25秒前
25秒前
凡千灵溪完成签到 ,获得积分10
26秒前
26秒前
不南发布了新的文献求助10
26秒前
今后应助yss采纳,获得10
27秒前
SciGPT应助开朗的可乐采纳,获得10
27秒前
海斯泰因完成签到,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588751
求助须知:如何正确求助?哪些是违规求助? 4671674
关于积分的说明 14788516
捐赠科研通 4626078
什么是DOI,文献DOI怎么找? 2531920
邀请新用户注册赠送积分活动 1500505
关于科研通互助平台的介绍 1468329