Multi-Agent attention-based deep reinforcement learning for demand response in grid-responsive buildings

需求响应 强化学习 灵活性(工程) 可扩展性 智能电网 负荷管理 网格 峰值需求 计算机科学 分布式计算 工程类 人工智能 数据库 统计 电气工程 数学 几何学
作者
Jiahan Xie,Akshay Ajagekar,Fengqi You
出处
期刊:Applied Energy [Elsevier BV]
卷期号:342: 121162-121162 被引量:38
标识
DOI:10.1016/j.apenergy.2023.121162
摘要

Integrating renewable energy resources and deploying energy management devices offer great opportunities to develop autonomous energy management systems in grid-responsive buildings. Demand response can promote enhancing demand flexibility and energy efficiency while reducing consumer costs. In this work, we propose a novel multi-agent deep reinforcement learning (MADRL) based approach with an agent assigned to individual buildings to facilitate demand response programs with diverse loads, including space heating/cooling and electrical equipment. Achieving real-time autonomous demand response in networks of buildings is challenging due to uncertain system parameters, the dynamic market price, and complex coupled operational constraints. To develop a scalable approach for automated demand response in networks of interconnected buildings, coordination between buildings is necessary to ensure demand flexibility and the grid's stability. We propose a MADRL technique that utilizes an actor-critic algorithm incorporating shared attention mechanism to enable effective and scalable real-time coordinated demand response in grid-responsive buildings. The presented case studies demonstrate the ability of the proposed approach to obtain decentralized cooperative policies for electricity costs minimization and efficient load shaping without knowledge of building energy systems. The viability of the proposed control approach is also demonstrated by a reduction of over 6% net load demand compared to standard reinforcement learning approaches, deep deterministic policy gradient, and soft actor-critic algorithm, as well as a tailored MADRL approach for demand response.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
没写名字233完成签到 ,获得积分10
刚刚
刚刚
刚刚
孙刚发布了新的文献求助10
刚刚
ty发布了新的文献求助10
刚刚
xing525888完成签到,获得积分20
刚刚
十月完成签到 ,获得积分10
刚刚
桐桐应助blueming采纳,获得10
1秒前
1秒前
1秒前
wanci应助小怪兽采纳,获得10
2秒前
孙晓燕完成签到 ,获得积分10
3秒前
灰灰灰发布了新的文献求助10
4秒前
万能图书馆应助欢--采纳,获得10
4秒前
无私诗桃完成签到,获得积分10
4秒前
xing525888发布了新的文献求助10
4秒前
4秒前
wangjie发布了新的文献求助10
5秒前
64658应助聪慧冰淇淋采纳,获得10
5秒前
5秒前
5秒前
张秉环完成签到 ,获得积分10
6秒前
英吉利25发布了新的文献求助10
7秒前
传奇3应助caixiayin采纳,获得30
7秒前
星辰大海应助奋斗的宛亦采纳,获得10
7秒前
Karry完成签到 ,获得积分10
8秒前
8秒前
9秒前
nqyKOj发布了新的文献求助20
9秒前
JamesPei应助HYI采纳,获得10
9秒前
myj发布了新的文献求助10
9秒前
欣欣完成签到,获得积分10
10秒前
Lucifer完成签到,获得积分10
10秒前
10秒前
duli发布了新的文献求助10
10秒前
10秒前
11秒前
Owen应助认真柜子采纳,获得10
11秒前
FashionBoy应助薇薇安采纳,获得10
11秒前
科研通AI5应助欢呼妙菱采纳,获得10
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987021
求助须知:如何正确求助?哪些是违规求助? 3529365
关于积分的说明 11244629
捐赠科研通 3267729
什么是DOI,文献DOI怎么找? 1803932
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808635