Multi-Agent attention-based deep reinforcement learning for demand response in grid-responsive buildings

需求响应 强化学习 灵活性(工程) 可扩展性 智能电网 负荷管理 网格 峰值需求 计算机科学 分布式计算 工程类 人工智能 电气工程 统计 几何学 数学 数据库
作者
Jiahan Xie,Akshay Ajagekar,Fengqi You
出处
期刊:Applied Energy [Elsevier]
卷期号:342: 121162-121162 被引量:13
标识
DOI:10.1016/j.apenergy.2023.121162
摘要

Integrating renewable energy resources and deploying energy management devices offer great opportunities to develop autonomous energy management systems in grid-responsive buildings. Demand response can promote enhancing demand flexibility and energy efficiency while reducing consumer costs. In this work, we propose a novel multi-agent deep reinforcement learning (MADRL) based approach with an agent assigned to individual buildings to facilitate demand response programs with diverse loads, including space heating/cooling and electrical equipment. Achieving real-time autonomous demand response in networks of buildings is challenging due to uncertain system parameters, the dynamic market price, and complex coupled operational constraints. To develop a scalable approach for automated demand response in networks of interconnected buildings, coordination between buildings is necessary to ensure demand flexibility and the grid's stability. We propose a MADRL technique that utilizes an actor-critic algorithm incorporating shared attention mechanism to enable effective and scalable real-time coordinated demand response in grid-responsive buildings. The presented case studies demonstrate the ability of the proposed approach to obtain decentralized cooperative policies for electricity costs minimization and efficient load shaping without knowledge of building energy systems. The viability of the proposed control approach is also demonstrated by a reduction of over 6% net load demand compared to standard reinforcement learning approaches, deep deterministic policy gradient, and soft actor-critic algorithm, as well as a tailored MADRL approach for demand response.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助lhr采纳,获得10
1秒前
唐老四发布了新的文献求助10
1秒前
璇22发布了新的文献求助10
3秒前
花开发布了新的文献求助10
3秒前
大个应助苹果紫萱采纳,获得10
4秒前
4秒前
ZZZ关闭了ZZZ文献求助
4秒前
5秒前
研友_LJGoXn完成签到,获得积分10
6秒前
xiaoxx发布了新的文献求助10
6秒前
孙栋发布了新的文献求助30
7秒前
8秒前
他们叫我张国荣完成签到,获得积分10
8秒前
12秒前
Do完成签到,获得积分10
13秒前
星辰大海应助花开采纳,获得10
13秒前
香蕉觅云应助xiaoxx采纳,获得10
16秒前
沙脑完成签到 ,获得积分10
17秒前
18秒前
yuu完成签到,获得积分20
20秒前
20秒前
bkagyin应助鱼尾雯采纳,获得10
21秒前
孙栋发布了新的文献求助30
21秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
吉祥应助科研通管家采纳,获得20
23秒前
NexusExplorer应助科研通管家采纳,获得10
23秒前
23秒前
情怀应助科研通管家采纳,获得10
23秒前
wanci应助科研通管家采纳,获得20
23秒前
curtisness应助科研通管家采纳,获得10
23秒前
23秒前
思源应助科研通管家采纳,获得10
23秒前
宇麦达发布了新的文献求助10
23秒前
铠甲勇士完成签到,获得积分10
26秒前
高速旋转老沁完成签到 ,获得积分10
26秒前
27秒前
33秒前
ding应助调皮寄瑶采纳,获得10
33秒前
包容的绝义完成签到,获得积分10
33秒前
完美世界应助张智信采纳,获得10
34秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136088
求助须知:如何正确求助?哪些是违规求助? 2786988
关于积分的说明 7780038
捐赠科研通 2443085
什么是DOI,文献DOI怎么找? 1298892
科研通“疑难数据库(出版商)”最低求助积分说明 625262
版权声明 600870