亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting the prognosis of HER2-positive breast cancer patients by fusing pathological whole slide images and clinical features using multiple instance learning

队列 乳腺癌 医学 病态的 人工智能 特征(语言学) 内科学 肿瘤科 癌症 计算机科学 语言学 哲学
作者
Yifan Wang,Lu Zhang,Yan Li,Fei Wu,Shiyu Cao,Feng Ye
出处
期刊:Mathematical Biosciences and Engineering [American Institute of Mathematical Sciences]
卷期号:20 (6): 11196-11211 被引量:5
标识
DOI:10.3934/mbe.2023496
摘要

In 2022, breast cancer will become an important factor affecting women's public health and HER2 positivity for approximately 15-20$ \% $ invasive breast cancer cases. Follow-up data for HER2-positive patients are rare, and research on prognosis and auxiliary diagnosis is still limited. In light of the findings obtained from the analysis of clinical features, we have developed a novel multiple instance learning (MIL) fusion model that integrates hematoxylin-eosin (HE) pathological images and clinical features to accurately predict the prognostic risk of patients. Specifically, we segmented the HE pathology images of patients into patches, clustered them by K-means, aggregated them into a bag feature-level representation through graph attention networks (GATs) and multihead attention networks, and fused them with clinical features to predict the prognosis of patients. We divided West China Hospital (WCH) patients (n = 1069) into a training cohort and internal validation cohort and used The Cancer Genome Atlas (TCGA) patients (n = 160) as an external test cohort. The 3-fold average C-index of the proposed OS-based model was 0.668, the C-index of the WCH test set was 0.765, and the C-index of the TCGA independent test set was 0.726. By plotting the Kaplan-Meier curve, the fusion feature (P = 0.034) model distinguished high- and low-risk groups more accurately than clinical features (P = 0.19). The MIL model can directly analyze a large number of unlabeled pathological images, and the multimodal model is more accurate than the unimodal models in predicting Her2-positive breast cancer prognosis based on large amounts of data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘟嘟嘟嘟发布了新的文献求助10
26秒前
科研通AI2S应助科研通管家采纳,获得10
34秒前
shhoing应助科研通管家采纳,获得10
34秒前
天真台灯完成签到 ,获得积分10
55秒前
shhoing应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
gexzygg应助科研通管家采纳,获得10
2分钟前
风趣小小完成签到,获得积分10
2分钟前
完美世界应助cenghao采纳,获得10
4分钟前
易水完成签到 ,获得积分10
4分钟前
4分钟前
爆米花应助科研通管家采纳,获得10
4分钟前
shhoing应助科研通管家采纳,获得10
4分钟前
gexzygg应助科研通管家采纳,获得10
4分钟前
cenghao发布了新的文献求助10
4分钟前
湘崽丫完成签到 ,获得积分10
4分钟前
5分钟前
Yxxx完成签到 ,获得积分10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
丘比特应助丽海张采纳,获得10
7分钟前
风轻云淡发布了新的文献求助20
7分钟前
7分钟前
丽海张发布了新的文献求助10
7分钟前
丽海张完成签到,获得积分10
7分钟前
Sevense_完成签到,获得积分10
8分钟前
8分钟前
bubulin完成签到,获得积分10
8分钟前
shhoing应助科研通管家采纳,获得10
8分钟前
shhoing应助科研通管家采纳,获得10
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
sisyphe发布了新的文献求助10
9分钟前
ikouyo完成签到 ,获得积分10
10分钟前
科研通AI6应助hourt2395采纳,获得10
10分钟前
10分钟前
科研通AI2S应助科研通管家采纳,获得10
10分钟前
有机盐应助科研通管家采纳,获得10
10分钟前
hourt2395发布了新的文献求助10
11分钟前
11分钟前
hourt2395完成签到,获得积分20
11分钟前
嘟嘟嘟嘟发布了新的文献求助30
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5561520
求助须知:如何正确求助?哪些是违规求助? 4646630
关于积分的说明 14678717
捐赠科研通 4587950
什么是DOI,文献DOI怎么找? 2517258
邀请新用户注册赠送积分活动 1490540
关于科研通互助平台的介绍 1461538