已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Predicting the prognosis of HER2-positive breast cancer patients by fusing pathological whole slide images and clinical features using multiple instance learning

队列 乳腺癌 医学 病态的 人工智能 特征(语言学) 内科学 肿瘤科 癌症 计算机科学 语言学 哲学
作者
Yifan Wang,Lu Zhang,Yan Li,Fei Wu,Shiyu Cao,Feng Ye
出处
期刊:Mathematical Biosciences and Engineering [Arizona State University]
卷期号:20 (6): 11196-11211 被引量:5
标识
DOI:10.3934/mbe.2023496
摘要

In 2022, breast cancer will become an important factor affecting women's public health and HER2 positivity for approximately 15-20$ \% $ invasive breast cancer cases. Follow-up data for HER2-positive patients are rare, and research on prognosis and auxiliary diagnosis is still limited. In light of the findings obtained from the analysis of clinical features, we have developed a novel multiple instance learning (MIL) fusion model that integrates hematoxylin-eosin (HE) pathological images and clinical features to accurately predict the prognostic risk of patients. Specifically, we segmented the HE pathology images of patients into patches, clustered them by K-means, aggregated them into a bag feature-level representation through graph attention networks (GATs) and multihead attention networks, and fused them with clinical features to predict the prognosis of patients. We divided West China Hospital (WCH) patients (n = 1069) into a training cohort and internal validation cohort and used The Cancer Genome Atlas (TCGA) patients (n = 160) as an external test cohort. The 3-fold average C-index of the proposed OS-based model was 0.668, the C-index of the WCH test set was 0.765, and the C-index of the TCGA independent test set was 0.726. By plotting the Kaplan-Meier curve, the fusion feature (P = 0.034) model distinguished high- and low-risk groups more accurately than clinical features (P = 0.19). The MIL model can directly analyze a large number of unlabeled pathological images, and the multimodal model is more accurate than the unimodal models in predicting Her2-positive breast cancer prognosis based on large amounts of data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
叶夜南发布了新的文献求助10
1秒前
Rondab应助Aman采纳,获得10
1秒前
李田田发布了新的文献求助10
2秒前
xiangyuan完成签到,获得积分10
2秒前
3秒前
wab完成签到,获得积分0
3秒前
笑而不语完成签到 ,获得积分10
4秒前
xiangyuan发布了新的文献求助10
7秒前
叶夜南完成签到,获得积分10
8秒前
11秒前
cc完成签到 ,获得积分10
13秒前
14秒前
羊蛋儿发布了新的文献求助10
14秒前
17秒前
19秒前
sun发布了新的文献求助10
20秒前
优雅愚志完成签到,获得积分10
21秒前
赘婿应助羊蛋儿采纳,获得10
23秒前
jixuzhuixun发布了新的文献求助10
24秒前
25秒前
自然的鹭洋完成签到,获得积分10
26秒前
xx完成签到 ,获得积分10
27秒前
30秒前
小二郎应助x1nger采纳,获得10
32秒前
FashionBoy应助Ace采纳,获得10
33秒前
赘婿应助李田田采纳,获得10
33秒前
jixuzhuixun完成签到,获得积分10
33秒前
34秒前
自由的谷丝完成签到,获得积分10
35秒前
Ava应助会撒娇的如天采纳,获得10
35秒前
39秒前
39秒前
核桃发布了新的文献求助10
42秒前
44秒前
萌萌完成签到 ,获得积分10
44秒前
Ace发布了新的文献求助10
45秒前
hyhyhyhy发布了新的文献求助20
45秒前
45秒前
47秒前
酥糖完成签到,获得积分10
48秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994433
求助须知:如何正确求助?哪些是违规求助? 3534839
关于积分的说明 11266585
捐赠科研通 3274665
什么是DOI,文献DOI怎么找? 1806453
邀请新用户注册赠送积分活动 883291
科研通“疑难数据库(出版商)”最低求助积分说明 809749