Energy optimization of a wearable lower limb rehabilitation robot based on deep learning

机器人 可穿戴计算机 步态 计算机科学 人工智能 蹲位 字错误率 楼梯 康复 模拟 过程(计算) 能量(信号处理) 物理医学与康复 工程类 物理疗法 医学 数学 嵌入式系统 土木工程 操作系统 统计
作者
Wenjie Ling
出处
期刊:Sustainable Energy Technologies and Assessments [Elsevier BV]
卷期号:56: 103123-103123
标识
DOI:10.1016/j.seta.2023.103123
摘要

The aging process of society requires more rehabilitation talents and medical resources to help the elderly and patients who need lower limb rehabilitation training. The wearable lower limb rehabilitation robot can help doctors to help patients complete the corresponding exercise training, breaking through the time and space constraints. The energy of such robots mainly comes from batteries. In addition to the corresponding battery management, the energy optimization of robots is its development trend. In this paper, the key gait recognition model of robot is constructed based on deep learning, and an energy optimization strategy is introduced to achieve energy saving by planning most trajectories. The experimental results show that the results of models with different layers tend to be stable. Comparing different gait pattern recognition errors, it is found that the error recognition rate between walking on the ground and going up and down stairs is higher, and the recognition error between squatting posture and standing posture is also higher. The model can effectively recognize and classify gait patterns. Compared with other algorithms, the error rate of the model is small, and the recognition and classification results are consistent with the actual motion features. Compared with other models, the wearable lower limb rehabilitation robot based on deep learning can effectively recognize different gait patterns, effectively reduce the error rate and achieve better classification results. At the same time, it can effectively realize the classification of gait stages under different motion states, while maintaining high accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
苏沐521发布了新的文献求助10
2秒前
pluto应助小小怪采纳,获得10
2秒前
2秒前
uu发布了新的文献求助10
2秒前
XLin发布了新的文献求助10
3秒前
pluto应助锅包肉爱吃肉采纳,获得10
3秒前
4秒前
Yvette2024发布了新的文献求助10
4秒前
ChinaNiu发布了新的文献求助10
4秒前
4秒前
雪白的紫翠应助phl采纳,获得10
4秒前
5秒前
5秒前
roger发布了新的文献求助10
6秒前
情怀应助叫秋田犬的猫采纳,获得10
6秒前
眼睛大雨筠应助1Q84采纳,获得30
7秒前
脑洞疼应助侯聪雅采纳,获得10
8秒前
打打应助土豪的雪巧采纳,获得10
8秒前
谥輄发布了新的文献求助10
9秒前
英姑应助泽灵采纳,获得10
10秒前
柳七完成签到,获得积分10
10秒前
10秒前
Ava应助asdfqwer采纳,获得10
10秒前
11秒前
sfafasfsdf发布了新的文献求助10
11秒前
13秒前
Allen发布了新的文献求助10
13秒前
wanci应助ChinaNiu采纳,获得10
14秒前
wjx关闭了wjx文献求助
16秒前
16秒前
xxxyt完成签到,获得积分20
17秒前
17秒前
糊糊发布了新的文献求助10
17秒前
19秒前
董昌铭发布了新的文献求助10
19秒前
甜味白开水完成签到,获得积分10
19秒前
19秒前
19秒前
认真飞瑶发布了新的文献求助10
20秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959051
求助须知:如何正确求助?哪些是违规求助? 3505388
关于积分的说明 11123550
捐赠科研通 3237039
什么是DOI,文献DOI怎么找? 1788976
邀请新用户注册赠送积分活动 871477
科研通“疑难数据库(出版商)”最低求助积分说明 802806