已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Energy optimization of a wearable lower limb rehabilitation robot based on deep learning

机器人 可穿戴计算机 步态 计算机科学 人工智能 蹲位 字错误率 楼梯 康复 模拟 过程(计算) 能量(信号处理) 物理医学与康复 工程类 物理疗法 医学 数学 嵌入式系统 土木工程 操作系统 统计
作者
Wenjie Ling
出处
期刊:Sustainable Energy Technologies and Assessments [Elsevier]
卷期号:56: 103123-103123
标识
DOI:10.1016/j.seta.2023.103123
摘要

The aging process of society requires more rehabilitation talents and medical resources to help the elderly and patients who need lower limb rehabilitation training. The wearable lower limb rehabilitation robot can help doctors to help patients complete the corresponding exercise training, breaking through the time and space constraints. The energy of such robots mainly comes from batteries. In addition to the corresponding battery management, the energy optimization of robots is its development trend. In this paper, the key gait recognition model of robot is constructed based on deep learning, and an energy optimization strategy is introduced to achieve energy saving by planning most trajectories. The experimental results show that the results of models with different layers tend to be stable. Comparing different gait pattern recognition errors, it is found that the error recognition rate between walking on the ground and going up and down stairs is higher, and the recognition error between squatting posture and standing posture is also higher. The model can effectively recognize and classify gait patterns. Compared with other algorithms, the error rate of the model is small, and the recognition and classification results are consistent with the actual motion features. Compared with other models, the wearable lower limb rehabilitation robot based on deep learning can effectively recognize different gait patterns, effectively reduce the error rate and achieve better classification results. At the same time, it can effectively realize the classification of gait stages under different motion states, while maintaining high accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
粽子完成签到,获得积分10
1秒前
chen发布了新的文献求助10
2秒前
沉钧发布了新的文献求助10
4秒前
123456777完成签到 ,获得积分0
6秒前
FashionBoy应助MoonByMoon采纳,获得10
6秒前
我是老大应助开放道天采纳,获得10
7秒前
winnie完成签到,获得积分10
10秒前
顺顺顺应助孤独的小玉采纳,获得10
10秒前
lu2025发布了新的文献求助10
11秒前
葛子文完成签到 ,获得积分10
11秒前
在水一方应助沉钧采纳,获得10
11秒前
1nooooo完成签到 ,获得积分10
14秒前
精明玲完成签到 ,获得积分10
15秒前
LJL完成签到 ,获得积分10
15秒前
笨蛋搞笑女完成签到 ,获得积分10
16秒前
zhdhh完成签到,获得积分10
16秒前
大模型应助大喵采纳,获得10
18秒前
suge完成签到 ,获得积分10
18秒前
粥粥完成签到,获得积分10
18秒前
Leofar完成签到 ,获得积分10
19秒前
张凌完成签到,获得积分10
23秒前
简单寻冬完成签到,获得积分10
23秒前
23秒前
23秒前
wanci应助科研通管家采纳,获得10
24秒前
华仔应助科研通管家采纳,获得10
24秒前
小二郎应助科研通管家采纳,获得10
24秒前
xu应助科研通管家采纳,获得30
24秒前
yyds应助科研通管家采纳,获得10
24秒前
Criminology34应助科研通管家采纳,获得10
24秒前
27秒前
27秒前
灰灰发布了新的文献求助10
27秒前
科研通AI2S应助落后的蚂蚁采纳,获得10
28秒前
29秒前
简单寻冬发布了新的文献求助10
30秒前
坦率的尔冬完成签到,获得积分10
32秒前
pikachu完成签到,获得积分10
32秒前
ufofly730完成签到 ,获得积分10
33秒前
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639380
求助须知:如何正确求助?哪些是违规求助? 4747904
关于积分的说明 15006208
捐赠科研通 4797525
什么是DOI,文献DOI怎么找? 2563511
邀请新用户注册赠送积分活动 1522544
关于科研通互助平台的介绍 1482245