Energy optimization of a wearable lower limb rehabilitation robot based on deep learning

机器人 可穿戴计算机 步态 计算机科学 人工智能 蹲位 字错误率 楼梯 康复 模拟 过程(计算) 能量(信号处理) 物理医学与康复 工程类 物理疗法 医学 数学 嵌入式系统 土木工程 操作系统 统计
作者
Wenjie Ling
出处
期刊:Sustainable Energy Technologies and Assessments [Elsevier]
卷期号:56: 103123-103123
标识
DOI:10.1016/j.seta.2023.103123
摘要

The aging process of society requires more rehabilitation talents and medical resources to help the elderly and patients who need lower limb rehabilitation training. The wearable lower limb rehabilitation robot can help doctors to help patients complete the corresponding exercise training, breaking through the time and space constraints. The energy of such robots mainly comes from batteries. In addition to the corresponding battery management, the energy optimization of robots is its development trend. In this paper, the key gait recognition model of robot is constructed based on deep learning, and an energy optimization strategy is introduced to achieve energy saving by planning most trajectories. The experimental results show that the results of models with different layers tend to be stable. Comparing different gait pattern recognition errors, it is found that the error recognition rate between walking on the ground and going up and down stairs is higher, and the recognition error between squatting posture and standing posture is also higher. The model can effectively recognize and classify gait patterns. Compared with other algorithms, the error rate of the model is small, and the recognition and classification results are consistent with the actual motion features. Compared with other models, the wearable lower limb rehabilitation robot based on deep learning can effectively recognize different gait patterns, effectively reduce the error rate and achieve better classification results. At the same time, it can effectively realize the classification of gait stages under different motion states, while maintaining high accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WxChen发布了新的文献求助10
刚刚
祝顺遂完成签到,获得积分10
刚刚
刚刚
刚刚
1秒前
tianle完成签到,获得积分20
1秒前
Seven完成签到,获得积分10
2秒前
2秒前
2秒前
贤惠的迎夏完成签到,获得积分10
3秒前
Hello应助MARS采纳,获得10
3秒前
十里故清欢完成签到,获得积分10
3秒前
虾仁完成签到,获得积分10
3秒前
4秒前
lilac应助啦啦啦采纳,获得10
4秒前
gy关闭了gy文献求助
4秒前
MADKAI发布了新的文献求助10
4秒前
清秀的砖头完成签到,获得积分10
4秒前
小马甲应助等待的乐儿采纳,获得10
4秒前
CodeCraft应助萌萌采纳,获得10
5秒前
5秒前
5秒前
sv发布了新的文献求助10
5秒前
LIU发布了新的文献求助10
5秒前
6秒前
6秒前
Owen应助xiuxiu_27采纳,获得10
7秒前
iW完成签到 ,获得积分10
7秒前
8秒前
woommoow完成签到,获得积分10
8秒前
9秒前
9秒前
200303am发布了新的文献求助10
9秒前
9秒前
9秒前
开天神秀完成签到,获得积分10
10秒前
566完成签到,获得积分10
10秒前
jackysuen完成签到,获得积分10
10秒前
MARS完成签到,获得积分10
11秒前
HEIKU应助鲤鱼凛采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759