Energy optimization of a wearable lower limb rehabilitation robot based on deep learning

机器人 可穿戴计算机 步态 计算机科学 人工智能 蹲位 字错误率 楼梯 康复 模拟 过程(计算) 能量(信号处理) 物理医学与康复 工程类 物理疗法 医学 数学 嵌入式系统 土木工程 操作系统 统计
作者
Wenjie Ling
出处
期刊:Sustainable Energy Technologies and Assessments [Elsevier]
卷期号:56: 103123-103123
标识
DOI:10.1016/j.seta.2023.103123
摘要

The aging process of society requires more rehabilitation talents and medical resources to help the elderly and patients who need lower limb rehabilitation training. The wearable lower limb rehabilitation robot can help doctors to help patients complete the corresponding exercise training, breaking through the time and space constraints. The energy of such robots mainly comes from batteries. In addition to the corresponding battery management, the energy optimization of robots is its development trend. In this paper, the key gait recognition model of robot is constructed based on deep learning, and an energy optimization strategy is introduced to achieve energy saving by planning most trajectories. The experimental results show that the results of models with different layers tend to be stable. Comparing different gait pattern recognition errors, it is found that the error recognition rate between walking on the ground and going up and down stairs is higher, and the recognition error between squatting posture and standing posture is also higher. The model can effectively recognize and classify gait patterns. Compared with other algorithms, the error rate of the model is small, and the recognition and classification results are consistent with the actual motion features. Compared with other models, the wearable lower limb rehabilitation robot based on deep learning can effectively recognize different gait patterns, effectively reduce the error rate and achieve better classification results. At the same time, it can effectively realize the classification of gait stages under different motion states, while maintaining high accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
发发旦旦完成签到,获得积分10
1秒前
英俊的铭应助想毕业了采纳,获得10
2秒前
乐观的大叔完成签到 ,获得积分10
2秒前
2秒前
忘多发布了新的文献求助10
3秒前
3秒前
Neoshine完成签到,获得积分10
3秒前
ruicao完成签到,获得积分10
4秒前
张雨兴完成签到,获得积分10
5秒前
文森特的向日葵完成签到,获得积分10
7秒前
7秒前
彩虹屁完成签到,获得积分10
7秒前
1s完成签到,获得积分10
7秒前
shenzhou9完成签到,获得积分10
7秒前
haozi应助felix采纳,获得50
7秒前
懒大王完成签到,获得积分10
8秒前
Hunter完成签到,获得积分10
8秒前
文章快快来完成签到,获得积分10
9秒前
温婉的眼神完成签到 ,获得积分10
9秒前
9秒前
10秒前
10秒前
汉堡包应助伶俐骁采纳,获得10
10秒前
宿帅帅完成签到,获得积分10
11秒前
肥猫完成签到,获得积分10
11秒前
tcf完成签到,获得积分10
11秒前
缓慢修杰完成签到,获得积分10
12秒前
谨慎的沉鱼完成签到,获得积分10
12秒前
rtaxa完成签到,获得积分0
13秒前
碳酸氢钠完成签到,获得积分10
13秒前
高贵的洋葱完成签到,获得积分10
14秒前
婷儿发布了新的文献求助10
14秒前
飘逸的尔安完成签到,获得积分10
14秒前
执着尔云发布了新的文献求助10
15秒前
时尚的傲霜完成签到,获得积分10
15秒前
尘南浔发布了新的文献求助10
16秒前
zxm完成签到,获得积分10
16秒前
jnoker完成签到,获得积分10
16秒前
关mou完成签到 ,获得积分10
17秒前
冷艳招牌完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5401972
求助须知:如何正确求助?哪些是违规求助? 4520630
关于积分的说明 14080343
捐赠科研通 4434071
什么是DOI,文献DOI怎么找? 2434371
邀请新用户注册赠送积分活动 1426592
关于科研通互助平台的介绍 1405338